RESUMEN
Hepatitis E virus (HEV) persists in the male genital tract that associates with infertility. However, the presence of HEV in the female genital tract is unreported. Vaginal secretions, cervical smears, and cervix uteri were collected to explore the presence of HEV in the female genital tract. HEV RNA and/or antigens were detected in the vaginal secretions, cervical smears, and the cervix uteri of women. The infectivity of HEV excreted into vaginal secretions was further validated in vitro. In addition, HEV replicates in the female genital tract were identified in HEV-infected animal models by vaginal injection or vaginal mucosal infection to imitate sexual transmission. Serious genital tract damage and inflammatory responses with significantly elevated mucosal innate immunity were observed in women or animals with HEV vaginal infection. Results demonstrated HEV replicates in the female genital tract and causes serious histopathological damage and inflammatory responses.
Asunto(s)
Líquidos Corporales , Hepatitis A , Virus de la Hepatitis E , Hepatitis E , Animales , Femenino , Masculino , Humanos , VaginaRESUMEN
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.
Asunto(s)
Hepatitis E , Macaca mulatta , Ratones Endogámicos BALB C , Proteínas Supresoras de Tumor , Regulación hacia Arriba , Animales , Humanos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Hepatitis E/virología , Hepatitis E/metabolismo , Hepatitis E/genética , Ratones , Virus de la Hepatitis E/genética , Células Hep G2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hígado/metabolismo , Hígado/virología , Modelos Animales de EnfermedadRESUMEN
MicroRNAs (miRNAs), the non-coding RNAs of ~22 nucleotides (nt) in length, play a vital role in regulating viral replication. Hepatitis E virus (HEV), a single-stranded RNA virus, is a predominant pathogen of acute hepatitis worldwide. Virus-encoded miRNAs regulate the viral life cycle and escape from the host innate immune system. However, it is rarely known about HEV-encoded miRNA (HEV-miR-A6). In the present study, HEV-miR-A6 was screened by microarray, and further identified in vivo and in vitro. HEV-miR-A6 originated from the methylase (MeT) of HEV open reading frame 1 (ORF1) and was highly conserved in eight HEV genotypes. HEV-miR-A6 expression was growing during HEV replication, and significantly increased in acute hepatitis E patients than convalescence patients. Furthermore, HEV-miR-A6 was specifically detected in liver, spleen, kidney and colon by in situ hybridization. To identify the specificity of HEV-miR-A6, its mutants (HEV-miR-A6M1 and HEV-miR-A6M2) were constructed to change the stem-loop structure. Interestingly, over-expression of HEV-miR-A6 or HEV-miR-A6M1 significantly facilitated viral replication, while HEV-miR-A6M2, another mutant completely changed the stem-loop structure was invalid. SIRP-α, a candidate target gene of HEV-miR-A6, was activated when HEV-miR-A6 over-expressed to inhibit the phosphorylation of IRF3, and subsequently suppressed the expression of type I interferon ß (IFN-ß). The promotion of viral replication by HEV-miR-A6 further identified in vivo. Significant suppression of IFN-ß production in the serum of HEV-infected mice pre-treated with HEV-miR-A6 was observed. In summary, HEV-miR-A6 activates SIRP-α to promote viral replication by inhibition of IFN-ß expression.
Asunto(s)
Regulación Viral de la Expresión Génica , Virus de la Hepatitis E/fisiología , Hepatitis E/metabolismo , Interferón beta/metabolismo , MicroARNs/biosíntesis , ARN Viral/biosíntesis , Replicación Viral , Femenino , Humanos , Masculino , Especificidad de ÓrganosRESUMEN
BACKGROUND: Hepatitis E virus (HEV) infection is a common cause of acute hepatitis worldwide and causes approximately 30% case fatality rate among pregnant women. Pregnancy serum (PS), which contains a high concentration of estradiol, facilitates HEV replication in vitro through the suppression of the PI3K-AKT-mTOR and cAMPK-PKA-CREB signaling pathways. However, the proteomics of the complex host responses to HEV infection, especially how PS facilitates viral replication, remains unclear. METHODS: In this study, the differences in the proteomics of HEV-infected HepG2 cells supplemented with fetal bovine serum (FBS) from those of HEV-infected HepG2 cells supplemented with serum from women in their third trimester of pregnancy were quantified by using isobaric tags for relative and absolute quantification technology. RESULTS: A total of 1511 proteins were identified, among which 548 were defined as differentially expressed proteins (DEPs). HEV-infected cells supplemented with PS exhibited the most significant changes at the protein level. A total of 328 DEPs, including 66 up-regulated and 262 down-regulated proteins, were identified in HEV-infected cells supplemented with FBS, whereas 264 DEPs, including 201 up-regulated and 63 down-regulated proteins, were found in HEV-infected cells supplemented with PS. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that in HEV-infected cells, PS supplementation adjusted more host genes and signaling pathways than FBS supplementation. The DEPs involved in virus-host interaction participated in complex interactions, especially a large number of immune-related protein emerged in HEV-infected cells supplemented with PS. Three significant or interesting proteins, including filamin-A, thioredoxin, and cytochrome c, in HEV-infected cells were functionally verified. CONCLUSIONS: The results of this study provide new and comprehensive insight for exploring virus-host interactions and will benefit future studies on the pathogenesis of HEV in pregnant women.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Femenino , Humanos , Embarazo , Virus de la Hepatitis E/genética , Proteómica/métodos , Fosfatidilinositol 3-Quinasas/genética , Genotipo , Replicación ViralRESUMEN
BACKGROUND: Hepatitis E virus (HEV) infection causes serious adverse pregnancy outcomes during pregnancy. However, the maternal and fetal damage induced by HEV infection is rarely reported. METHODS: A BALB/c pregnant mouse model was established to explore the maternal and fetal pathological damage and inflammatory responses caused by HEV infection. RESULTS: Notably, miscarriages and stillbirths were observed in HEV-infected pregnant mice. HEV infections were identified by qRT-PCR, immunohistochemical analysis and immunofluorescence assay in the uterus, placenta, umbilical cords and livers and brains of fetuses. Serious inflammatory responses and pathological damage were triggered in the uterus and placenta of HEV-infected pregnant mice. Vertical transmission of HEV resulted in severe pathological damage and inflammatory responses in the livers and brains of fetuses, as well as emerging apoptosis cells in the brains of fetuses. Most of the cytokines/chemokines in the sera were significantly increased in the HEV-infected pregnant mice. Remarkably, cytokines/chemokines were significantly different between HEV-infected pregnant and miscarriage mice; IL9, GM-CSF and IL1α were the most important three cytokines/chemokines in determining the pregnancy outcomes. CONCLUSION: HEV infections cause serious maternal/fetal pathological damage, inflammatory responses and apoptosis, which may be responsible for adverse pregnancy outcomes.
Asunto(s)
Aborto Espontáneo , Virus de la Hepatitis E , Hepatitis E , Complicaciones Infecciosas del Embarazo , Animales , Femenino , Ratones , Embarazo , Aborto Espontáneo/etiología , Citocinas , Hepatitis E/complicaciones , Hepatitis E/patología , Ratones Endogámicos BALB CRESUMEN
BACKGROUND: Hepatitis E virus (HEV) infection has become a global concern, especially in pregnant women. However, the association between HEV prevalence and age, gravidity and parity of pregnant women remains unclear. METHODS: Pregnant women (n=19,762) were enrolled for HEV prevalence and associated adverse pregnancy outcomes investigation in Qujing City, Yunnan Province of China from May 2019 to December 2020. RESULTS: The seroprevalence of HEV was 11.6% (2,297/19,762; 95% CI:11.2%-12.1%). About 11.4% (2,247/19,762; 95% CI:10.9%-11.8%) were positive for anti-HEV IgG antibody, 0.1% (22/19,762; 95% CI:0.1%-0.2%) were positive for anti-HEV IgM antibody, and 0.1% (28/19,762; 95% CI:0.1%-0.2%) were positive for both anti-HEV IgM and IgG antibodies. Sixty-one out of 2,297 anti-HEV-antibodies-positive pregnant women were positive for HEV RNA. Phylogenetic analysis revealed that all HEV isolates from pregnant women belong to genotype 4. Age, gravidity and parity are associated with increased prevalence of HEV. Pregnant women positive for HEV-IgG antibody bear a higher risk for an adverse pregnancy history and liver injury with elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels than anti-HEV-negative pregnant women. Furthermore, seropositive pregnant women suffered a higher adverse maternal outcomes risk (crude odds ratio [cOR]=1.29; 95% CI: 1.16-1.43; adjusted odds ratio [aOR]=1.40, 95% CI: 1.25-1.55 for anti-HEV-IgG-positive pregnant women and cOR=1.38, 95% CI: 1.02-1.86; aOR=1.43, 95% CI: 1.05-1.95 for anti-HEV-IgM-positive pregnant women) and fetal outcomes risk (cOR=1.80, 95% CI: 1.61-2.01; aOR=1.77, 95% CI: 1.57-1.99) than anti-HEV-negative pregnant women. Adverse pregnancy outcomes of HEV infection are aggravated by age, gravidity and parity. CONCLUSION: In this study, we demonstrated high prevalence of HEV in pregnancy women in China, and HEV infection can cause various adverse maternal and neonatal outcomes.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Complicaciones Infecciosas del Embarazo , Recién Nacido , Femenino , Embarazo , Humanos , Virus de la Hepatitis E/genética , Mujeres Embarazadas , Resultado del Embarazo , Complicaciones Infecciosas del Embarazo/epidemiología , Estudios Seroepidemiológicos , Prevalencia , Filogenia , China/epidemiología , Hepatitis E/epidemiología , Anticuerpos Antihepatitis , Inmunoglobulina G , Inmunoglobulina MRESUMEN
BACKGROUND: Hepatitis E virus (HEV) infection in pregnant women causes adverse pregnancy outcomes, including maternal death, premature delivery, stillbirth, and fetal infection. However, the pathogenesis of maternal and fetal HEV infection is unclear. METHODS: Placenta and placental appendixes were collected from HEV-4 infected pregnant women to explore the vertical transmission of HEV from mothers to fetuses. RESULTS: HEV-4 replicated in the placenta, placental membrane, and umbilical cord and was vertically transmitted from mothers to fetuses. HEV-4 placental infection resulted in serious histopathological damage, such as fibrosis and calcification, and severe inflammatory responses. Adverse maternal outcomes were observed in 38.5% of HEV-4 infected pregnant women. The distinct cytokine/chemokine expression patterns of HEV-infected pregnant women and nonpregnant women may contribute to the adverse pregnancy outcomes. Furthermore, the impaired maternal and fetal innate immune responses against HEV-4 facilitated viral replication during pregnancy. CONCLUSION: HEV-4 replicates in the placenta and is vertically transmitted from mothers to fetuses, causing severe histopathological damage.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Complicaciones Infecciosas del Embarazo , Embarazo , Femenino , Humanos , Virus de la Hepatitis E/genética , Placenta/patología , Hepatitis E/patología , Feto/patología , GenotipoRESUMEN
To evaluate whether uterine injury caused by hepatitis E virus (HEV) infection is responsible for adverse pregnancy outcomes. HEV-infected female BALB/c mice were coupled with healthy male BALB/c mice at 0, 7, 14, 21, and 91 dpi to explore the uterine injury caused by HEV infection. Mice were euthanized after 10 days of copulation, and uteruses were collected for HEV RNA and antigen detection and histopathological analysis. Inflammatory responses; apoptosis; and estrogen receptor É (ER-É), endomethal antibody (ERAb), cytokeratin-7 (CK7), vimentin (VIM), and vascular endothelial growth factor (VEGF) expression levels were evaluated. After 10 days of copulation, miscarriage and nonpregnancy, as well as enlarged uteruses filled with inflammatory cytokines, were found in HEV-infected mice. HEV RNA and antigens were detected in the sera and uteruses of HEV-infected mice. Significant endometrial thickness (EMT) thinning, severe inflammatory responses, and aggravated apoptosis in the uteruses of HEV-infected mice that experienced miscarriage might contribute to adverse pregnancy outcomes. Furthermore, significantly suppressed ER-É expression and increased ERAb, CK7, VIM, and VEGF expression levels were found in the uteruses of HEV-infected mice that had miscarried. However, uterine damage recovered after complete HEV clearance, and impaired fertility was improved. EMT injury, severe inflammatory responses, and aggravated apoptosis in the uterus caused by HEV infection are responsible for poor pregnancy outcomes.