Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 12(1): 5054, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322127

RESUMEN

In this work, we proposed a virtual laboratory based on full-field crystal plasticity (CP) simulation to track plastic anisotropy and to calibrate yield functions for multiphase metals. The virtual laboratory, minimally, only requires easily accessible EBSD data for constructing the highly-resolved microstructural representative volume element and macroscopic flow stress data for identifying the micromechanical parameters of constituent phases. An inverse simulation method based on a global optimization scheme was developed to identify the CP parameters, and a nonlinear least-squares method was employed to calibrate yield functions. Mechanical tests of advanced high strength steel sheet under various loading conditions were conducted to validate the virtual laboratory. Three well-known yield functions, the quadratic Hill48 and non-quadratic Yld91 and Yld2004-18p yield functions, were selected as the validation benchmarks. All the studied functions, calibrated by numerous stress points of arbitrary loading conditions, successfully captured both the deformation and strength anisotropies. The full-field CP modeling correlated well the microscopic deformation mechanism and plastic heterogeneity with the macromechanical behavior of the sheet. The proposed virtual laboratory, which is readily extended with physically based CP models, could be a versatile tool to explore and predict the mechanical property and plastic anisotropy of advanced multiphase materials.

2.
Materials (Basel) ; 14(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34501091

RESUMEN

Bimodal grain structure leads to high strength and strain hardening effect of metallic materials. In this study, an effective approach called flow control extrusion (FCE) is proposed to achieve heterostructures of pure copper. Compared with conventional extrusion (CE), FCE shows much stronger grain refine ability and much weaker grain orientation concentration. The significant grain refinement and heterostructures depend on the severe shear strain from FCE. The heterostructures of sample subject to FCE transfer from bimodal structure to gradient structure with the decrease of temperature, as the grains in the surface of sample are all refined to ultrafine scale. Both these two heterostructures can realize the improvement of strength and strain hardening effect simultaneously.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda