RESUMEN
The emergence of anaerobic ammonium oxidation (anammox) coupled to iron reduction (named Feammox) refreshes the microbial pathways for nitrogen (N) loss. However, the ecological role of Feammox, compared with conventional denitrification and anammox, in microbial N attenuation in ecosystems remains unclear. Here, the specific contribution of Feammox to N loss and the underlying microbiome interactive characteristics in a riparian ecosystem were investigated through 15N isotope tracing and molecular analysis. Feammox was highlighted in the riparian interface soils and maximally contributed 14.2% of N loss. Denitrification remained the dominant contributor to N loss (68.0%-95.3%), followed by anammox (5.7%-19.1%) and Feammox (0-14.2%). The rates of Feammox and anammox significantly decreased in rhizosphere soils (0.15 ± 0.08 µg N g-1 d -1 for Feammox, 0.80 ± 0.39 µg N g-1 d -1 for anammox) compared with those in non-rhizosphere soils; however, the activities of denitrification remarkably increased in the rhizosphere (13.17 ± 3.71 µg N g-1 d -1). In rhizosphere soils, the competition between bioavailable organic matter (e.g., amino acids and carbohydrates) and ammonium for electron acceptor [i.e., Fe(III)] was the vital inducement for restricted Feammox, while the nitrite consumption boosted by heterotrophic denitrifiers was responsible for weakened anammox. The functional gene of autotrophic Acidimicrobiaceae bacterium A6, instead of heterotrophic Geobacteraceae spp., was significantly positively correlated with Feammox activity. Rare iron-reducing bacteria showed higher node degrees in the non-rhizosphere network than in the rhizosphere network. A syntrophic relationship was found between iron-reducing bacteria (e.g., Anaeromyxobacter, Geobacter) and iron-oxidizing bacteria (e.g., Sideroxydans) in the non-rhizosphere network and facilitated the Feammox pathway. This study provides an in-depth exploration of microbial driven N loss in a riparian ecosystem and introduces new insights into riparian management practices toward high-efficient N pollution alleviation.
Asunto(s)
Compuestos de Amonio , Compuestos Férricos , Oxidación Anaeróbica del Amoníaco , Ecosistema , Rizosfera , Nitrógeno/análisis , Oxidación-Reducción , Bacterias/genética , Bacterias/metabolismo , Anaerobiosis , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Suelo/química , Hierro/químicaRESUMEN
Aquaculture can substantially alter the accumulation and cycling of nutrients in sediments. However, the microbial mechanisms mediating sediment dissimilatory nitrate (NO3-) reduction in freshwater aquaculture ponds are still unclear, which rule the removal and retention of N element. In the present study, three microbial NO3- reduction processes in riparian aquaculture pond sediments (i.e., crab, shrimp and fish ponds) and natural freshwater sediments (i.e., lakes and rivers) were investigated via isotopic tracing and molecular analyses. The potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) significantly increased in the aquaculture ponds compared with the natural freshwaters. Denitrification contributed 90.40-94.22% to the total NO3- reduction (product as N2), followed by 2.49-5.82% of anammox (product as N2) and 2.09-5.18% of DRNA (product as NH4+). The availability of C and N substrates, rather than functional gene abundance, regulated the activities of NO3- reductions and microbiome composition. Microbial mechanism based on network analysis indicated that heterotrophic denitrifiers and DNRA bacteria (e.g., Bacillus, Micromonospora, Mycobacterium and Brachybacterium) determined the community structure and function for N conversions in aquaculture ponds, whereas the such microbial network in natural freshwater sediments was manipulated by autotrophic denitrifiers (e.g., Desulfuromonas, Polaromonas, Solitalea). Collectively, this study provides an in-depth exploration of microbial nitrogen removal in freshwater aquaculture areas and supports management strategies for N pollution caused by reclamation for aquaculture in riparian zones.
Asunto(s)
Compuestos de Amonio , Nitratos , Animales , Nitratos/análisis , Desnitrificación , Nitrógeno , Óxidos de Nitrógeno , Acuicultura , Lagos , Oxidación-ReducciónRESUMEN
The discovery of complete ammonia oxidizers (comammox), which can oxidize ammonia into nitrate, has recently changed the concept of traditional nitrification. However, comparative studies on the analysis of comammox microbial community in different ecosystems are still scarce. In this study, the distribution and diversity of the comammox microbial community in farmlands, riparian zones, and river sediments in summer and winter were investigated by high-throughput sequencing. And the relative abundance of ammonia-oxidizing microorganisms was measured via their amoA genes of real-time quantitative polymerase chain reaction (qPCR). The relationships between ammonia oxidation microorganisms and the environmental factors were further analyzed. The abundance of comammox clade A was one order of magnitude lower than that of ammonia-oxidizing archaea (AOA) but higher than that of ammonia-oxidizing bacteria (AOB). The abundance of comammox was higher in summer than in winter and higher in farmland soils (1.81 ± 0.95 × 107 copies g-1) than in riparian zones and river sediments. Meanwhile, Candidatus Nitrospira nitrosa were the most widespread comammox in most samples (up to 86.31%), followed by Candidatus Nitrospira nitrificans, with a low abundance of Candidatus Nitrospira inopinata (lower than 0.61%). Furthermore, the abundance of comammox clade A had a significantly negative correlation with pH and NH4+ concentration (P < 0.05). The study revealed the potential advantages of comammox in farmlands and may be conducive to further research on comammox in microbial nitrogen cycling.
Asunto(s)
Amoníaco , Ecosistema , Archaea/genética , Bacterias/genética , Nitrificación , Oxidación-Reducción , FilogeniaRESUMEN
The rational design of binuclear Au(I)-Au(I), Au(II)-Au(II), and Au(I)-Au(III) complexes requires an understanding of how the redox states interconvert. Herein, the electrochemical interconversion of the three oxidation states I, II, and III is reported on the voltammetric (cyclic and rotating disk electrode) time scales for binuclear gold complexes containing C6F4PPh2 as a ligand, to demonstrate for the first time formation of a binuclear Au(II)-Au(II) from a Au(I)-Au(III) complex. Results are supported by bulk electrolysis and coulometry with reaction products being identified by 31P NMR and UV-vis spectroscopy. All electrochemical processes involve an overall two-electron charge-transfer process with no one-electron intermediate being detected. Importantly, the kinetically rather than thermodynamically favored isomer [Au2IIX2(µ-2-C6F4PPh2)2] is formed on redox cycling of [XAuI(µ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIIX] (X = Cl, ONO2). Finally, a mechanism is proposed to explain the simultaneous change of coordination of the chelating carbanionic ligand to bridging mode and interconversion of oxidation states in binuclear gold complexes.
RESUMEN
Microplastics (MPs) are widespread in agroecosystems and profoundly impact soil microbiome and nutrient cycling. However, the effects of MPs on soil autotrophic ammonium oxidization processes, including nitrification, complete ammonium oxidation (comammox), anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox), remain unclear. These processes are the rate-limiting steps of nitrogen cycling in agroecosystems. Here, our work unveiled that exposures of polyethylene (PE), polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) MPs significantly modulated ammonium oxidization pathways with distinct type- and dose-dependent effects. Nitrification remained the main contributor (56.4-70.7 %) to soil ammonium removal, followed by comammox (11.7-25.6 %), anammox (5.0-20.2 %) and Feammox (3.3-11.6 %). Compared with conventional nonbiodegradable MPs (i.e., PE and PP), biodegradable MPs (i.e., PLA and PBAT) exhibited more pronounced impacts on soil nutrient conditions and functional microbes, which collectively induced alterations in soil ammonium oxidation. Interestingly, low-dose PLA and PBAT remarkably enhanced the roles of anammox and Feammox in soil ammonium removal, contributing to the mitigation of soil acidification in agroecosystems. This study highlights the diverse responses of ammonium oxidization pathways to MPs, further deepening our understanding of how MPs affect biogeochemical cycling and enriching strategies for agricultural managements amid increasing MPs pollution.
Asunto(s)
Compuestos de Amonio , Microplásticos , Nitrificación , Oxidación-Reducción , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Compuestos de Amonio/metabolismo , Microplásticos/metabolismo , Microbiología del Suelo , Poliésteres/metabolismo , Suelo/química , Procesos Autotróficos , Hierro/metabolismo , Hierro/química , Polipropilenos/metabolismo , AnaerobiosisRESUMEN
Iron(II)-based metal organic framework (Fe(II)-MOF) nanosheets have emerged as promising candidates for photo-Fenton catalysis. However, efficiently synthesizing Fe(II)-MOF nanosheets remains a significant challenge. Here, a bottom-up synthesis strategy is proposed to prepare two-dimensional Fe-MOF nanosheets (TFMN) with micrometer lateral dimensions and nanometer thickness, featuring Fe(II) as the metal nodes. The application of TFMN in the photo-Fenton degradation of carbamazepine (CBZ) demonstrates remarkable CBZ degradation performance and excellent efficiency across a wide range of pH values. The electron density and density of states are further calculated by density functional theory. Mechanism analysis identifies h+, â¢OH and â¢O2- as the predominant active species contributing to the catalytic oxidation process in the Vis/TFMN/H2O2 system.
Asunto(s)
Carbamazepina , Peróxido de Hidrógeno , Hierro , Estructuras Metalorgánicas , Nanoestructuras , Oxidación-Reducción , Carbamazepina/química , Estructuras Metalorgánicas/química , Peróxido de Hidrógeno/química , Hierro/química , Catálisis , Nanoestructuras/química , Contaminantes Químicos del Agua/químicaRESUMEN
Much more attention has been paid to the actinobacterial community in soils or water columns of aquatic habitats. However, there are few studies on their composition and diversity in lake sediments. Here, we used denaturing gradient gel electrophoresis and clone libraries of partial 16S rRNA gene to study the spatial variations of actinobacterial communities across 4 seasons in the surface sediments of the shallow, subtropical Taihu Lake. Cluster analysis based on fingerprints showed clear spatiotemporal variations of actinobacterial communities and higher seasonal variation than spatial heterogeneity. Based on clone libraries, this pattern was supported by the principal coordinates analysis in the phylogenetic context and by detrended correspondence analysis on the operational taxonomic unit table. Additionally, phylogenetic analysis showed that the putative freshwater-specific actinobacterial lineages (e.g., acI) were also detected in the lake sediments, which suggests that these subclusters may also adapt to the sediment environments. Summarily, our results suggested that actinobacterial communities of the surface sediments were more affected by seasonal variation than spatial heterogeneity in the intrahabitat of Taihu Lake.
Asunto(s)
Actinobacteria/clasificación , Lagos/microbiología , Microbiología del Suelo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , China , Electroforesis en Gel de Gradiente Desnaturalizante , Ecosistema , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Estaciones del AñoRESUMEN
Metal-nitrogen-site catalysts are widely recognized as effective heterogeneous catalysts in peroxymonosulfate (PMS)-based advanced oxidation processes. However, the selective oxidation mechanism for organic pollutants is still contradictory. In this work, manganese-nitrogen active centers and tunable nitrogen vacancies were synchronously constructed on graphitic carbon nitride (LMCN) through l-cysteine-assisted thermal polymerization to reveal different antibiotic degradation mechanisms. Benefiting from the synergism of manganese-nitrogen bond and nitrogen vacancies, the LMCN catalyst exhibited excellent catalytic activity for the degradation of tetracycline (TC) and sulfamethoxazole (SMX) antibiotics with first-order kinetic rate constants of 0.136 min-1 and 0.047 min-1, which were higher than those of other catalysts. Electron transfer dominated TC degradation at low redox potentials, while electron transfer and high-valent manganese (Mn (V)) were responsible for SMX degradation at high redox potentials. Further experimental studies unveiled that the pivotal role of nitrogen vacancies is to promote electron transfer pathway and Mn(V) generation, while nitrogen-coordinated manganese as the primary catalytic active site determines Mn(V) generation. In addition, the antibiotic degradation pathways were proposed and the toxicity of byproducts was analyzed. This work provides an inspiring idea for the controlled generation of reactive oxygen species by targeted activation of PMS.
Asunto(s)
Manganeso , Nitrógeno , Nitrógeno/química , Peróxidos/química , Sulfametoxazol , AntibacterianosRESUMEN
At present, the researches on photocatalysis were mainly focused on the design, improvement and development of catalysts, and less attention was paid to the existing characteristics of environmentally persistent free radicals (EPFRs) during the process of photocatalytic oxidation. In this study, A flower-like Z-type heterojunction ZnO/ZnIn2S4 (ZnO/ZIS) and typical antibiotic ceftriaxone sodium (CS) were taken as study objects, concentrating on the generation characteristics of EPFRs during the degradation of CS by ZnO/ZIS, and clarifying the degradation mechanism of CS in which EPFRs participated. The results showed that the degradation efficiency of 10 mg/L CS by 0.40 g/L ZnO/ZIS reached 85.3% in 150 min under the irradiation of 500 W xenon lamp. It was clear that ·O2- and h+ play major roles in CS degradation by ZnO/ZIS under visible light, and ·OH plays an auxiliary role. Furthermore, the formation mechanism of EPFRs during photocatalytic degradation processes of CS by ZnO/ZIS were first investigated thoroughly via experimental analysis and density functional theory (DFT) calculations. The concentration level of EPFRs centered on oxygen atoms is 1011 spin/mm3, which were generated in the process of degradation of CS by ZnO/ZIS under visible light. The production of EPFRs chiefly includes two procedures: chemical adsorption and transfer of electrons. The adsorption energy of precursor P8 on ZnIn2S4 side is -1.91 eV, the electrons transferred from precursor P8 and P11 to ZnO/ZnIn2S4 heterojunction. Surprisingly, EPFRs have little negative effects on the degradation process of CS by ZnO/ZIS. The study was not only a key field in the development of photocatalysis technology, but also a new way to study the removal mechanism of antibiotics.
Asunto(s)
Ceftriaxona , Óxido de Zinc , Radicales Libres , Luz , Adsorción , Oxígeno , AntibacterianosRESUMEN
A two-chamber microbial photoelectrochemical cell (MPEC) with a denitrification biocathode and an α-Fe2O3/P3HT photoanode was established aimed to enhance nitrate removal from wastewater of low carbon sources and achieve simultaneous ibuprofen degradation. The results demonstrated that the average removal of NO3--N in the biocathode reached 96.56 ± 0.72% when the COD/NO3--N was 0.75, and the relative contributions of heterotrophic and autotrophic denitrification were 21.47% and 78.53%, respectively. When there was no organic source in the influent, the maximum removal of NO3--N was less than 45%. High-throughput sequencing revealed that both heterotrophic bacteria, such as Bacillus, and autotrophic bacteria (e.g., Thermomonas and Hydrogenophaga) dominated in the cooperative denitrification biocathode. Moreover, the functional gene analysis showed that the abundance of genes related to denitrification was highest in the cooperative denitrification biocathode. In addition, the photocatalytic degradation efficiency of ibuprofen in the anode chamber attained 67.95% ± 0.97%.
Asunto(s)
Carbono , Desnitrificación , Reactores Biológicos , Ibuprofeno , Nitratos/metabolismo , Nitrógeno/metabolismo , Aguas ResidualesRESUMEN
A low-cost catalyst with high metal loading and unique catalytic activities is highly desired for peroxymonosulfate (PMS) activation in environmental remediation. Herein, in situ anchoring strategy using 1,10-phenanthroline is reported to construct manganese doped carbon nitride (PMCN) with 8.2 wt% manganese loading and dramatically enhanced PMS adsorption and sulfamethoxazole (SMX) removal efficiency. Our study revealed that the PMCN/PMS system readily reacted with contaminants with electron-rich groups, where complete degradation of sulfamethoxazole (SMX) was achieved within 60 min. Combining quenching experiments, EPR tests, and electrochemical analysis, we proposed a dual nonradical pathway dominated by high-valent manganese oxygen species (Mn(V) = O) and electron transfer. Systematic investigation elucidated that the introduction of 1,10-phenanthroline constructed denser catalyst active sites, and identified the manganese center and pyridine nitrogen as the active sites for PMS activation. Furthermore, PMCN exhibited excellent pH anti-interference ability and good reusability, achieving more than 90% SMX degradation efficiency after four cycles. This study provides new insights into the regulation of Mn-N active sites and promotes the mechanistic understanding of the synergistic effect of manganese and pyridine nitrogen in PMS activation.
Asunto(s)
Manganeso , Sulfametoxazol , Nitrilos , Nitrógeno , Peróxidos/química , Piridinas , Sulfametoxazol/químicaRESUMEN
Ammonium (NH4+) oxidation is a key step in nitrogen transformation in ecosystems. Prior to the recent discovery of Feammox (anaerobic NH4+ oxidation coupled with iron reduction), anammox (anaerobic NH4+ oxidation coupled with nitrite reduction) was thought of as the only pathway by which anaerobic NH4+ loss (NH4+ directly to N2) occurs in soils. Experimental evidence has confirmed that both anammox and Feammox contribute to anaerobic NH4+ loss; however, their relative contributions to this process in farmland soils are largely unknown. Therefore, in this study, we examined the seasonal activities of anammox and Feammox in conventional tillage (CT) and no-tillage (NT) soils around Lake Taihu, China. Isotopic tracing experiments showed higher anammox and Feammox rates in summer than in other seasons, and the contribution of Feammox to anaerobic NH4+ loss from the farmland soils (54.6%-69.3%) was higher than that of anammox. Further, the Feammox rates corresponding to the two soil tillage practices were significantly different, whereas their corresponding anammox rates showed no significant differences. Furthermore, molecular analysis showed that the abundance of Geobacteraceae differed significantly with season and tillage practice, whereas the abundance of anammox bacteria showed no significant differences between CT and NT practices. Structural equation modeling also revealed that the anammox rate was directly or indirectly driven by N availability and season, whereas the Feammox rate was driven by soil moisture content, Fe(III) concentration, Fe(III) reduction rates, tillage practice, and season. Overall, this study enhances understanding regarding anaerobic NH4+ oxidation in farmland soils and highlight the importance of Feammox in NH4+ loss in such an ecosystem.
Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/química , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , China , Ecosistema , Granjas , Compuestos Férricos/química , Lagos , Nitrógeno/análisis , Oxidación-Reducción , Suelo/químicaRESUMEN
Although manganese(II) is known to have no role in peroxymonosulfate (PMS) activation, through a series of sulfamethoxazole (SMX) oxidation experiments, we found that the addition of pyridine organic ligands can improve the catalytic activity and accelerate SMX oxidation. For the organic ligands to be effective: the stability constant of the Mn(III) complex should be higher than that of the Mn(II) complex. A positive correlation was observed between the SMX oxidation rate and Mn(II) concentration, and the maximum PMS utilization efficiency was achieved. Many shreds of evidence verified that neither â¢SO4- nor â¢OH was associated with SMX oxidation. The enhanced effect of phenanthroline on the Mn(II)/PMS system was attributed to the highly oxidative intermediate manganese species (Mn(V)), originating from the two-electron transfer reaction of complexed Mn(III) and PMS. Notably, the main oxidizing species did not change (η-(PMSO2) â¼ 100%) regardless of the initial PMSO concentration or pH value. Additionally, the analysis of SMX degradation products revealed that the oxygen transfer oxidation pathway was dominant in the Mn(II)/phenanthroline/PMS system, while the N radical coupling pathway also contributed significantly to SMX oxidation. This work offers new insights into the formation of high-valent manganese species and provides a potential strategy for applying low-concentration Mn(II) to wastewater treatment.
Asunto(s)
Manganeso , Peróxidos , Ligandos , Oxidación-Reducción , PiridinasRESUMEN
Feammox is a newly discovered process of anaerobic ammonium oxidation driven by Fe(III) reduction. Nitrate-dependent Fe(II) oxidation (NDFO) is the coupling of Fe(II) oxidation and nitrate reduction to produce N2 under anaerobic conditions. It has not been reported whether the coupling of the two reactions exists in natural enrichment. In this study, enrichment culture experiments were carrired out to prove the occurrence of Feammox with NDFO. The results indicated that the nitrogen and iron cycle were formed during natural enrichment cultures, including Fe(III) reduction and NH4+-N was oxidation to NO3--N, NO2--N and N2, Fe(III) and Fe(II) were cyclically formed, and Fe(II) was oxidized with NO3--N reduced to N2. The removal efficiencies of ammonium nitrogen and total nitrogen in the incubation were about 92.9% and 20% respectively. Organic carbon experiments indicate that sodium acetate can promote the initial NO3--N removal and a low concentration of organic carbon limited the NDFO process because iron-oxidizing bacteria are mixotrophic microorganisms. The added 9,10-anthraquinone-2,6-disulfonate (AQDS) in the later stage can promote NDFO to remove nitrate, thereby increasing the TN removal efficiency to 50%. 15N-isotope tracer incubations provided direct evidence for the occurrence of Feammox coupled to NDFO, with rates producing 30N2 of Feammox (0.024-0.0288 mg N·L-1·d-1) and NDFO (0.0465-0.0833 mg N·L-1·d-1) in three groups (Wetland/Wheat soil/Sediment). 16S rRNA sequencing further demonstrated that Pseudomonas, Rhodanobacter, Acinetobacter and Thermomonas were the dominant generas among the enrichment cultures, and these bacteria belonged to FeOB and FeRB, which may further promote Feammox coupled to NDFO in the cultivation system.
Asunto(s)
Compuestos de Amonio , Nitratos , Carbono , Compuestos Férricos , Compuestos Ferrosos , Hierro , Nitrógeno , Óxidos de Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16SRESUMEN
Metal-organic frameworks have been widely used as photocatalytic materials. In this paper, a novel photocatalyst HSO3-MIL-53(Fe) with acidity regulating groups was successfully synthesized by the solvothermal method and applied to remove carbamazepine (CBZ) and ibuprofen (IBP). The photodegradation efficiency of vis/H2O2/HSO3-MIL-53(Fe) can reach 100% when the pH value is 8 or 9. The free radical capture experiment and electron paramagnetic resonance analysis proved that hole (h+), hydroxide radical (·OH), singlet oxygen (1O2), and superoxide Radical (·O2-) are the main active species for pollutants degradation. In the vis/H2O2/HSO3-MIL-53(Fe) system, the high pollutant degradation efficiency under alkaline conditions was attributed to two factors: (1) the acidity adjusting group -HSO3 adjusts the pH value of the whole system, which is beneficial to the photo-Fenton process. (2) The photogenerated electrons of HSO3-MIL-53(Fe) can be captured by Fe (III), H2O2 and O2 to accelerate the reduction of Fe (III) and generate ·OH, 1O2, and ·O2-. Besides, H2O2 can also be activated by Fe (II) and Fe (III). The above processes synergistically improved the photocatalytic efficiency. Based on liquid chromatography-mass spectrometry (LC-MS) analysis, the possible degradation pathways of the two pollutants were proposed.
Asunto(s)
Estructuras Metalorgánicas , Carbamazepina , Peróxido de Hidrógeno , Ibuprofeno , HierroRESUMEN
Since the process of anaerobic ammonium oxidation (anammox) coupled with ferric iron reduction (termed Feammox) was discovered, it has been observed in various natural environments. However, besides the vertical distribution of Feammox in paddy soils, its differences and relationships with traditional nitrogen loss processes, including denitrification and anammox, remain unclear. Here, we studied the distribution of nitrogen loss pathways in different layers (0-50 cm) of paddy soil in southeastern China using 15N isotope tracer technology and molecular analysis. Our study showed that denitrification had a rate of 2.19 ± 0.39 mg N·kg-1·d-1, which was the highest activity in the surface layer (0-10 cm). The activities of anammox and Feammox reached peak values in the 10-20 cm (1.13 ± 0.16 mg N·kg-1·d-1) and 20-30 cm (0.23 ± 0.02 mg N·kg-1·d-1) soil layer, respectively. The nitrogen loss in the surface layer was more serious than that in the deep layer under paddy cultivation. In this study, denitrification was the main nitrogen loss pathway in the surface soil, but Feammox became an important nitrogen loss pathway (up to 26.1%) in the 20-40 cm depth. Overall, our research could improve and perfect the nitrogen cycle pathways in paddy soil.
Asunto(s)
Compuestos de Amonio , Suelo , Anaerobiosis , China , Desnitrificación , Nitrógeno/análisis , Oxidación-ReducciónRESUMEN
Anaerobic ammonium oxidation coupled to Fe(III) reduction, termed Feammox, is a newly identified microbial process that occurs in nitrogen and iron cycles. As the seasonal distribution of Feammox in different ecosystem habitats has not been fully explored, this study investigated the potential Feammox rates and the diversity and abundance of iron reducing bacteria (IRB) in three habitats during two seasons by using isotope tracing technique and molecular analysis, respectively. Results showed that potential Feammox rates vary both seasonally and spatially, having relatively higher rates in summer (0.05-0.19â¯mgâ¯N kg-1 d-1) and lower rates in winter (0.02-0.09â¯mgâ¯N kg-1 d-1). In addition, relatively higher and lower rates were observed in farmland soils (0.09-0.19â¯mgâ¯N kg-1 d-1) and river sediments (0.02-0.05â¯mgâ¯N kg-1 d-1), respectively. The abundance and diversity of IRB were also found to vary both spatially and seasonally. Furthermore, the results show that Feammox may transform nitrogen at a rate of approximately 2.4-22.5â¯kgâ¯N ha-1 yr-1 within the investigated area. It is considered that the soil moisture, the Fe(III) content, and the total organic carbon are important factors controlling Feammox and IRB. Overall, these results extend current scientific knowledge about nitrogen and iron cycles in ecosystem habitats.
Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Hierro/metabolismo , Microbiología del Suelo , Bacterias/genética , Biodiversidad , China , Ecosistema , Granjas , Nitrógeno/análisis , Nitrógeno/metabolismo , Ciclo del Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S , Ríos , Estaciones del Año , Suelo/química , Análisis Espacio-TemporalRESUMEN
Riparian areas are widely recognized as the main areas for carbon sequestration and nitrogen pollution removal, while little is known about the effects of the respective sand mining activities on riparian zones. In this study, the effects of sand mining activities on the soil organic carbon (SOC) storage, different N-removal processes (Feammox, anammox, and denitrification), and composition of the relative bacterial community at a depth of 0-40 cm were determined based on investigations in riparian sand mining areas and adjacent forestlands. The SOC density of the sand mining areas (2.59 t ha-1, depth of 0-40 cm) was lower than that of the riparian forestlands (80.42 t ha-1). Compared with those of the riparian forestland, the sand mining area exhibited a dramatic reduction in the CO2-fixed gene abundances (cbbL) and a significant change in the composition of cbbL-containing bacteria. The rates of the Feammox (0.038 ± 0.014 mg N kg-1 d-1), anammox (0.017 ± 0.017 mg N kg-1 d-1), and denitrification (0.090 ± 0.1 mg N kg-1 d-1) processes at a depth of 0-20 cm in the soil layer of the sand mining area were reduced by 70.17%, 91.5%, and 93.62% compared with those of the riparian forestland, respectively. The riparian areas in the study area (approximately 12 ha, depth of 0-40 cm) destroyed by sand mining activities released approximately 933.96 t stored soil carbon, which reduce the annual carbon sequestration potential by 28.8-40.8 t. Moreover, the potential N-removal rates in the riparian forestlands (depth of 0-20 cm) by the Feammox, anammox, and denitrification processes were 1514.21-1530.95 kg N ha-1 year-1, whereas the potential N-removal rates in the sand mining area were only 121.2-126.19 kg N ha-1 year-1. Therefore, more investigations are necessary for comparing the benefits and damage of sand mining activities in riparian areas before more sand mining activities are approved.
Asunto(s)
Secuestro de Carbono , Desnitrificación , Minería , Arena , Suelo , China , Ríos , Suelo/químicaRESUMEN
Anaerobic ammonium oxidation coupled with iron reduction is termed as Feammox, and is a new nitrogen removal process. However, there is a paucity of studies on the response of nutrient additions on Feammox process in farmland ecosystems. In this study, we investigated the shifts of Feammox and iron-reducers under nitrogen (N) and phosphorus (P) applications via isotopic tracing and high-throughput sequencing technology. In the isotopic tracing experiment, Feammox rates was significantly greater in the N and/or P applications soil (0.184-0.239 µg N g-1 day-1) than in the no fertilizer soil (0.172 µg N g-1 day-1). The results indicated that N and P applications could favor the Feammox reaction. Molecular analysis showed that five predominant iron-reducing bacteria, including Geobacter, Anaeromyxobacter, Pseudomonas, Thiobacillus and Bacillus, were detected. Their abundance in the soil with no fertilizer, N, P and N combined with P was 0.93%, 1.11%-1.71%, 0.99%, and 1.40%-1.75%, respectively. This implied that iron-reducing bacteria can be stimulated under N and P applications. Overall, the results of this study demonstrated that N and/or P applications could alter the activity of Feammox, and modulate the potential of IRB in the farmland soils.
Asunto(s)
Compuestos de Amonio , Suelo , Anaerobiosis , Ecosistema , Granjas , Hierro , Nitrógeno/análisis , Ciclo del Nitrógeno , Oxidación-Reducción , Fósforo , Microbiología del SueloRESUMEN
Up to date, no great breakthrough has been made in the research of anaerobic ammonium oxidation mediated by Mn(IV)-oxide reduction (termed Mnammox). Recently, the Feammox process has become a hot research topic in the study of nitrogen loss from soils. Interestingly, in this study, an alternative pathway of N loss was proposed in terrestrial ecosystems. Mnammox could produce NO2-, NO3-, and N2 as end products. Here, our study demonstrated the occurrence of Mnammox, and direct evidence for Mnammox in agricultural drainage ditch soils with microbial Mn(IV) and Fe(III) reduction was obtained using the 15NH4+ isotopic tracing technique. The extent and rate of 30N2 and 29N2 production and Mn(IV) reduction were enhanced when amended with 15NH4+ and were further promoted when amended with 15NH4++MnO2. Moreover, although the Fe(III) reduction rate was stimulated with the addition of 15NH4+, the Fe(III) reduction rate greatly decreased when MnO2 was added. Mnammox rates ranged from 0.40 to 0.79â¯mgâ¯Nâ¯kg-1â¯d-1, and an estimated 6.57-18.25â¯kgâ¯ha-1â¯year-1 N loss was associated with Mnammox in the examined soils. We revealed that the Mnammox reaction may be more efficient than the Feammox reaction, and the Feammox rates found in previous studies may have been overestimated. Overall, for the first time, this work provided key evidence for the existence of Mnammox in terrestrial ecosystems and suggested that Mnammox could be an important pathway for nitrogen loss in agricultural drainage ditch soils.