RESUMEN
A novel coumarin-naphthalimide-based ratiometric fluorescent probe, called XPT, was synthesized with the aim of achieving high sensitivity and anti-interference for N2H4 detection. The probe XPT consists of coumarin species and naphthalimide species, which act as the energy donor and acceptor, respectively. The phthalimide group functions as the recognition unit for N2H4. Without the presence of hydrazine, the naphthalimide remains in a non-fluorogenic phthalimide mode, disrupting the FRET signal. However, the phthalimide group undergoes the Gabriel reaction to an amine, which induces FRET and consequently causes a shift in the emitted fluorescence from 468 to 528 nm when N2H4 was added. The results of the study demonstrated that XPT exhibits high sensitivity with a limit of detection 2.2 µM, as well as selectivity. Furthermore, it is remarkable that the distribution of N2H4 in real water samples can be monitored by XPT.
Asunto(s)
Cumarinas , Colorantes Fluorescentes , Hidrazinas , Naftalimidas , Hidrazinas/análisis , Hidrazinas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Naftalimidas/química , Cumarinas/química , Cumarinas/síntesis química , Contaminantes Químicos del Agua/análisis , Estructura Molecular , Agua/química , Espectrometría de Fluorescencia , Transferencia Resonante de Energía de FluorescenciaRESUMEN
To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.
Asunto(s)
Amoníaco , Cobre , Electrodos , Hidróxidos , Níquel , Nitrógeno , Oxidación-Reducción , Amoníaco/química , Nitrógeno/química , Níquel/química , Cobre/química , Hidróxidos/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/químicaRESUMEN
Nitrate pollution in groundwater is a global environmental concern. As a result, accurate identification of potential sources for such pollution is of critical significance to the effective control of groundwater quality. In this study, forty-nine shallow groundwater samples were collected from the Huaibei mining area. Hydro-chemical characterization, geospatial analysis technique, dual nitrate isotopes (δ15N-NO3- and δ18O-NO3-), Bayesian model and health risk assessment model were adopted for exploring the conditions, sources, proportion, and potential health risks of nitrate pollution for the first time in the study area. The results showed that the nitrate concentration ranged from 0.00 to 293.21 mg/L, and that 18.37% groundwater samples exceeded the standard of drinking water in China (GB 5749-2006). Based on the dual isotopic values of nitrate, it could be concluded that nitrification was dominated migration and transformation process of nitrogen. The results of Bayesian model showed that the proportional contributions of the potential nitrate pollution sources in shallow groundwater were manure and sewage (M&S) (39.54 %), NH4+ in fertilizer and precipitation (NHF&P) (34.93 %), soil nitrogen (SN) (14.89 %), and NO3- in atmospheric deposition (NAD) (10.64 %). The health risk assessment indicated that non-carcinogenic risks posed by NO3--N was higher for children than adults. The primary exposure pathway was oral ingestion. Monte Carlo simulation were applied to evaluate model uncertainty. The probabilities of non-carcinogenic risks were up to 12.54 % for children and 5.22 % for adults. In order to protect water quality and drinking water safety, it was suggested that effective nitrate reduction strategies and better management practices can be implemented.
Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Teorema de Bayes , Agua Potable/análisis , Método de Montecarlo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Agua Subterránea/química , China , Calidad del AguaRESUMEN
The migration, transformation, and accumulation of dissolved organic matter (DOM) in pore water of sediment cores play a pivotal role in lacustrine carbon cycling. In order to understand the dynamics of DOM in the sediments of large shallow eutrophic lakes, we examined the vertical profiles of DOM and the benthic fluxes of dissolved organic carbon (DOC) in sediment cores located in algae accumulated, dredged, and central areas of eutrophic Lake Taihu, China. Optical properties showed the significant influence of terrestrial inputs on the DOM components of pore water in the algae accumulated area but an abundant accumulation of autochthonous DOM in the central area. The benthic fluxes of DOC ranging from -458.2 to -139.4 mg·m-2·d-1 in the algae accumulated area displayed an opposite diffusion direction to the other two areas. The flux ranges of 9.5-31.2 mg·m-2·d-1 in the dredged area and 14.6-48.0 mg·m-2·d-1 in the central area were relatively smaller than those in the previously reported lake ecosystems with low trophic levels. Dredging engineering disturbed the pre-dredging distribution patterns of DOM in sediment cores. The deposition, accumulation, and transformation of massive algae scums in eutrophic lakes probably promoted the humification degree of sediments.
Asunto(s)
Materia Orgánica Disuelta , Lagos , Agua , Ecosistema , China , Sedimentos GeológicosRESUMEN
Abnormal intracellular hydrogen peroxide (H2O2) concentration is related to cancer, cardiovascular, cerebrovascular diseases and other diseases. A novel H2O2 fluorescent probe (BBS) was designed and synthesized. The fluorescence intensity shows good linear relationship with the concentration of H2O2 (0-40 µM), and the detection limit is 132 nM. The response mechanism of probe BBS was verified and analyzed by UV-Vis spectra, titration spectra and density functional theory (DFT) on Gaussian 09 programme. BBS can be used for bioimaging in living cells.
Asunto(s)
Colorantes Fluorescentes , Peróxido de Hidrógeno , Benzotiazoles , Células HeLa , HumanosRESUMEN
This study empirically identifies business travellers' preferences during the COVID-19 pandemic across different regions. A stated preference study was conducted during April to June 2021 on respondents in the U.S., the city of Shanghai in mainland China and Hong Kong. Generalised mixed multinomial logit (GMXL) models are estimated incorporating attributes of travel characteristics, severity levels of the pandemic, and health control measures at the airport. When an online meeting is inapplicable, respondents from Shanghai and Hong Kong highly value heath control measures, and are not sensitive to the time spent at airport health checkpoints. In comparison, U.S. respondents are averse to the time spent for health check, the reporting of personal information, travel history, symptoms, and the requirements of compulsory mask wearing and onsite sample testing. However, when online meeting is applicable, all the respondents show no appreciation for health control measures, while the U.S. respondents are twice more averse to the time spent at airport health checkpoints. Online meeting reduces the intention of international business travel amid the pandemic for passengers in Shanghai and Hong Kong, but imposes no significant effects on U.S. travellers. Such significant heterogeneity in traveller preference partly explains the different recovery patterns observed in various aviation markets, and justifies individualized travel arrangements and service priority in fulfilling pandemic control requirements across different regions. Our study also suggests that there are commonly accepted areas for global cooperation such as the sharing of vaccination record, and the option of online meeting calls for convenient travel arrangements amid pandemic to all countries.
RESUMEN
Warming has been affecting carbon cycling in freshwater ecosystems throughout recent decades. However, how the co-metabolism effect (CE) during the decomposition of sediment organic carbon (SOC) in eutrophic lakes responds to warming remains understudied. A 33-day experiment was conducted to examine the mechanisms that underpin the CE in lacustrine sediments. The results indicated that warming increased the co-metabolism intensity of sedimentary organic matter. At the beginning of the experiment (0-9 d), the co-metabolism intensity increased rapidly at both 25â and 35â. However, at the end of the experiment (33 d), the cumulative co-metabolism intensity was highest at 25â, which was 33.75% and 153.74% higher than the intensities at 15â and 35â, respectively. By enhancing the co-metabolism intensity of the SOC, warming would weaken lakes "carbon sink" functions. Thus, our study provides novel evidence that microorganisms regulate SOC turnover and effectively maintain a balance between resources and microbial requirements.
Asunto(s)
Carbono , Lagos , Ecosistema , Secuestro de CarbonoRESUMEN
Fine particulate matter (PM2.5), a ubiquitous environmental pollutant, has been indicated to affect thyroid hormone (TH) homeostasis in women, but the detailed mechanism behind this effect remains unclear. The objective of this study was to evaluate the roles of the hypothalamic-pituitary-thyroid (HPT) axis and hepatic transthyretin in the thyroid-disrupting effects of PM2.5. Sprague Dawley rats were treated with PM2.5 (0, 15 and 30 mg/kg) by passive pulmonary inhalation for 49 days; and recovery experimental group rats were dosed with PM2.5 (30 mg/kg) for 35 days, and no treatment was done during the subsequent 14 days. PM2.5 was handled twice a day by passive pulmonary inhalation throughout the study. After treatment, pathological changes were analyzed by performing haemotoxylin and eosin staining, measuring levels of THs and urine iodine (UI) in serum, plasma, and urine samples using enzyme-linked immunoabsorbent assay, and expression of proteins in the hypothalamus, pituitary, thyroid, and liver tissues of rats were analyzed by immunohistochemistry and Western blotting. The levels of oxidative stress factors, such as reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and nuclear factor-kappa B (NF-κB) in female rats' plasma were also evaluated by ELISA. The results of these analyses revealed that PM2.5 treatment induced pathologic changes in rat thyroid and liver characterized by increased follicular cavity size and decreased amounts of follicular epithelial cells and fat vacuoles, respectively. Serum levels of triiodothyronine, thyroxine, and thyroid stimulating hormone were significantly decreased, plasma NF-κB level was increased and plasma redox state was unbalanced (enhanced ROS, MDA and Gpx levels; reduced SOD activities) in female rats treated with PM2.5 (P < 0.05). PM2.5 treatment suppressed the biosynthesis and biotransformation of THs by increasing sodium iodide symporter, thyroid transcription factor 1, thyroid transcription factor 2, and paired box 8 protein expression levels (P < 0.05). Additionally, thyroid stimulating hormone receptor and thyroid peroxidase levels were significantly decreased (P < 0.05). Both thyrotropin releasing hormone receptor and thyroid stimulating hormone beta levels were enhanced (P < 0.05). Moreover, transport of THs was inhibited due to reduced protein expression of hepatic transthyretin upon treatment with PM2.5. In summary, PM2.5 treatment could perturb TH homeostasis by affecting TH biosynthesis, biotransformation, and transport, affecting TH receptor levels, and inducing oxidative stress and inflammatory responses. Activation of the HPT axis and altered hepatic transthyretin levels therefore appear to play a crucial role in PM2.5-induced thyroid dysfunction.
Asunto(s)
Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Material Particulado/toxicidad , Prealbúmina/metabolismo , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Animales , Femenino , Homeostasis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/química , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Tiroidea/metabolismo , Glándula Tiroides/metabolismo , Glándula Tiroides/patologíaRESUMEN
Based on a typical residential area, this paper studies the characteristics of pollutant concentration changes in two rainfall runoffs and the first flush effect of rainfall. In rainfall runoff, the concentrations of seven pollutants (CODMn, TN, DTN, NH3-N, TP, DTP, and PO43-) increased during the initial rainfall period and decreased in the later period. Rainfall causes the erosion of pollutants on the underlying surface so that water pollution begins when rainfall runoff occurs, and the pollution level drops over time. The seven pollutants all experience this first flush effect, of which, rainfall has the strongest scouring effect on NH3-N produced by domestic sewage. The significant excess of pollutants in rainfall runoff should be considered by management departments. In addition, the existence of the first flush effect makes it possible in theory to partially intercept rainfall runoff to control water pollution, thereby reducing the cost of pollution control.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , China , Ciudades , Monitoreo del Ambiente , Lluvia , Movimientos del Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Given the important role of biothiols in various physiological processes, there is a need to develop novel fluorescent sensors for detecting them. Herein, a novel "on-off-on" fluorescent sensor (E)-N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)-6-((quinolin-8-yloxy)methyl)picolinohydrazide (PQC) was synthesized and its absorbance and fluorescence properties were characterized. The sensor PQC could form a stable complex and showed a significant fluorescence quenching response to Cu2+ with a quenching efficiency of approximately 100%, and the PQC-Cu2+ complex showed a fluorescence enhancement response to GSH with a higher recovery rate of above 80% in a CH3OH/HEPES (9:1 v/v, pH = 7.23) buffer system. Its detection limits were determined to be 0.17 µM for Cu2+ and 0.20 µM for GSH, and the binding stoichiometry of PQC-Cu2+ was determined to be 1: 1 by Job's plot method. Importantly, the sensor PQC can be used for filter paper strip tests and bioimaging in living cells.
Asunto(s)
Complejos de Coordinación/química , Cobre/química , Colorantes Fluorescentes/química , Glutatión/análisis , Benzopiranos/química , Cristalografía por Rayos X , Células HeLa , Humanos , Microscopía Fluorescente , Modelos Moleculares , Imagen Óptica , Quinolinas/químicaRESUMEN
The aim of this study was to determine the safety and efficacy of recombinant human thrombopoietin (rhTPO) for the management of immune thrombocytopenia (ITP) during pregnancy. Pregnant patients with ITP were enrolled in the study if they had a platelet count less than 30 × 109/L, were experiencing bleeding manifestations, had failed to respond to corticosteroids and/or intravenous immunoglobulin (IVIG), and had developed refractoriness to platelet transfusion. Thirty-one patients received rhTPO at an initial dose of 300 U/kg once daily for 14 days. Twenty-three patients responded (74.2%), including 10 complete responders (>100 × 109/L) and 13 responders (30-100 × 109/L). It appears that rhTPO ameliorated the bleeding symptoms remarkably, even in the nonresponders. rhTPO was well tolerated. Dizziness, fatigue, and pain at an injection site were reported in 1 patient each. No congenital disease or developmental delays were observed in the infants in a median follow-up of 53 (range, 39-68) weeks. In conclusion, rhTPO is a potentially safe and effective treatment choice for patients with ITP during pregnancy. Our work has paved the way for further study on the clinical application of rhTPO and other thrombopoietic agents for the management of ITP during pregnancy. This study is registered at www.clinicaltrials.gov as NCT02391272.
Asunto(s)
Complicaciones Hematológicas del Embarazo/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Trombopoyetina/uso terapéutico , Adulto , Femenino , Hemorragia/tratamiento farmacológico , Humanos , Recién Nacido , Recuento de Plaquetas , Embarazo , Complicaciones Hematológicas del Embarazo/sangre , Púrpura Trombocitopénica Idiopática/sangre , Proteínas Recombinantes/efectos adversos , Trombopoyetina/efectos adversos , Trombopoyetina/sangreRESUMEN
In this study, a BODIPY-based water-soluble fluorescent chemosensor BBP has been synthesized using BODIPY as the fluorescence group and quinoline as the recognition group. BBP can be used for naked eye detection of pH in complete aqueous solution and it shows high specificity in a wide range of cations. The pKa value is determined to be 2.94 and the fluorescence intensity is linearly related to pH in the range of 2.4-3.6.
RESUMEN
The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.
Asunto(s)
Alcaloides/análisis , Polifenoles/análisis , Sapindaceae/química , Alcaloides/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Semillas/químicaRESUMEN
The multiple proxies involving elemental and stable isotope ratios (C/N, δ15N and δ13C) and biomarkers are powerful tools for estimating sedimentary organic matter (SOM) sources. However, the systematic and reasonable evaluation of organic matter sources existing with serious spatial heterogeneity in large, shallow and eutrophic lakes is still far from clear. Samples of sediments, aquatic plants and particulate organic matter (POM) collected from different ecotype regions of Taihu Lake, China, including algae-type lakeshore, grass-type lakeshore, algae-grass-type lakeshore, inflow rivers and estuary, groove reed zone, offshore and central regions, were analyzed for their SOM sources via elemental and stable isotope ratios (C/N, δ15N and δ13C), n-alkanes and fatty acids (FA). More depleted δ13CTOC values (-26.3 to -25.4) and higher relative percentages of odd n-alkanes (C26 to C35) and long-chain FA (C24:0 to C32:0) clarified the influence of inflow rivers carrying terrestrial inputs on SOM. The higher relative percentages of n-alkanes from C14 to C20, FA (C16:0), and polyunsaturated FA (C18:2 and C18:3) in the reed belt of the groove demonstrated that some special terrain was important for the accumulation of algae-derived OM in sediments. Short-chain and middle-chain biomarker compounds revealed a large contribution from macrophytes in the grass-type region and an obvious algae-derived organic matter accumulation in the algae-type region, respectively. However, some overlapping ranges of C/N, δ15N and δ13C among aquatic plants, the ubiquity of lipid biomarkers compounds, anthropogenic influences, meteorological factors and lake topography caused some biased identification results for partial samples using different indicators. These biased identifications were mainly embodied in the source category and contribution difference based on principal component analysis and an end-member mixing model. Therefore, the estimation of SOM sources by multiple proxies cannot be uniformly applied in large freshwater lakes. The systematic investigation and comprehensive understanding of the different ecotypes and their surrounding environments are the important links in the identification of SOM sources via multiple indicators.
Asunto(s)
Eutrofización , Sedimentos Geológicos/química , Isótopos de Carbono , China , Monitoreo del Ambiente , LagosRESUMEN
We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300â h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr3 QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr3 QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80â lm W-1 and a narrow emission with a full width at half maximum (FWHM) of 25â nm.
RESUMEN
Methylammonium lead halide perovskites suffer from poor stability because of their high sensitivity to moisture. Inorganic material coatings of SiO2 are preferred for coupling with perovskites to improve their stability, whereas the conventional SiO2 formation method is unsuitable because it requires water. Here, a simple SiO2 generation method based on the high hydrolysis rate of tetramethyl orthosilicate in analytical-grade toluene was developed to avoid the addition of water and catalyst. As a result, SiO2-encapsulated CH3NH3PbBr3 quantum dots (MAPB-QDs/SiO2) were fabricated without decreasing the quantum yield. Photostability tests indicated that the MAPB-QDs/SiO2 samples were markedly more stable than the unencapsulated MAPB-QDs. The photoluminescence (PL) of the MAPB-QDs/SiO2 powders was maintained at 94.10% after 470 nm LED illumination for 7 h, which was much higher than the remnant PL (38.36%) of the pure MAPB-QD sample under a relative humidity of 60%. Similar test results were observed when the MAPB-QDs/SiO2 powders were incorporated into the poly(methyl methacrylate) films. The enhanced photostability is ascribed to the SiO2 barriers protecting the MAPB-QDs from degradation.
RESUMEN
Semiconductor quantum dots (QDs) have attracted extensive attention in various applications because of their unique optical and electronic properties. However, long-term photostability remains a challenge for their practical application. Here, we present a simple method to enhance the photostability of QDs against oxidation by doping aluminum into the shell of core/shell QDs. We demonstrate that Al in the coating shell can be oxidized to Al2O3, which can serve as a self-passivation layer on the surface of the core/shell QDs and effectively stop further photodegradation during long-term light irradiation. The prepared CdSe/CdS:Al QDs survived 24 h without significant degradation when they were subjected to intense illumination under LED light (450 nm, 0.35 W/cm(2)), whereas conventional CdSe/CdS QDs were bleached within 3 h.
RESUMEN
Longan (Dimocarpus longan Lour.) is a non-climacteric fruit with a short postharvest life. The regulation of phospholipase D (PLD) activity closely relates to postharvest browning and senescence of longan fruit. In this study, a novel cDNA clone of longan PLDδ (LgPLDδ) was obtained and registered in GenBank (accession No. JF791814). The deduced amino acid sequence possessed all of the three typical domains of plant PLDs, a C2 domain and two catalytic HxKxxxxD motifs. The tertiary structure of LgPLDδ was further predicted. The western blot result showed that the LgPLDδ protein was specifically recognized by PLDδ antibody. The Q-RT-PCR (real-time quantitative PCR) result showed that the level of LgPLDδ mRNA expression was higher in senescent tissues than in developing tissues, which was also high in postharvest fruit. The western-blotting result further certified the different expression of LgPLDδ. These results provided a scientific basis for further investigating the mechanism of postharvest longan fruit adapting to environmental stress.
Asunto(s)
Frutas/genética , Regulación de la Expresión Génica de las Plantas , Fosfolipasa D/genética , Proteínas de Plantas/genética , Sapindaceae/genética , Secuencias de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/enzimología , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Fosfolipasa D/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sapindaceae/clasificación , Sapindaceae/enzimología , Alineación de SecuenciaRESUMEN
Catch fish optimization algorithm (CFOA) is a newly proposed meta-heuristic algorithm based on human behaviors. CFOA shows better performance on multiple test functions and clustering problems. However, CFOA shows poor performance in some cases, and there is still room for improvement in convergence accuracy, getting rid of local traps, and so on. To further enhance the performance of CFOA, a multi-strategy improved catch fish optimization algorithm (MICFOA) is proposed in this paper. In the exploration phase, we propose a Lévy-based differential independent search strategy to enhance the global search capability of the algorithm while minimizing the impact on the convergence speed. Secondly, in the exploitation phase, a weight-balanced selection mechanism is used to maintain population diversity, enhance the algorithm's ability to get rid of local optima during the search process, and effectively boost the convergence accuracy. Furthermore, the structure of CFOA is also modified in this paper. A fishermen position replacement strategy is added at the end of the algorithm as a way to strengthen the robustness of the algorithm. To evaluate the performance of MICFOA, a comprehensive comparison with nine other metaheuristic algorithms is performed on the 10/30/50/100 dimensions of the CEC 2017 test functions and the 10/20 dimensions of the CEC2022 test functions. Statistical experiments show that MICFOA has more significant dominance in numerical optimization problems, and its overall performance outperforms the CFOA, PEOA, TLBO, COA, ARO, EDO, YDSE, and other state-of-the-art algorithms such as LSHADE, JADE, IDE-EDA, and APSM-jSO.
RESUMEN
Background: The consumption of sugar-sweetened beverages (SSBs) has become a major public health problem globally. However, no studies have specifically examined the relationship between SSB intake and chronic low back pain (CLBP). Therefore, the present study aimed to investigate the relationship between SSB intake and the risk of CLBP. Methods: This cross-sectional study enrolled participants aged 20 to 69 from the National Health and Nutrition Examination Survey. CLBP was defined as persistent LBP for a consecutive three-month period. Furthermore, SSB intake was assessed and calculated based on dietary recall interviews. Moreover, survey-weighted logistic regression models were employed to evaluate the association between SSB intake and the risk of CLBP, while the restricted cubic spline (RCS) analysis was used to determine whether there were nonlinear associations between SSB intake and CLBP risk. In addition, subgroup analysis was performed using stratification and interaction analysis for all covariates. Results: A total of 4,146 participants (mean age: 43.405 years) were enrolled in the final analysis. The results of survey-weighted logistic regression models showed that SSB consumption was significantly associated with an increased risk of CLBP among individuals aged 20 to 69 years. Moreover, the results of subgroup analysis and interaction analysis demonstrated that the association between SSB intake and the risk of CLBP was modified by smoking status and hypertension. Specifically, the SSB intake-associated CLBP risk was more pronounced among current smokers or individuals with hypertension. Conclusion: Reduction of SSB consumption might contribute to the prevention of CLBP for individuals aged 20 to 69 years. Moreover, current smokers or individuals with hypertension should be more vigilant about the SSB intake-associated CLBP risk. Nevertheless, caution should be exercised when interpreting the results of this study, as further research is necessary to explore the association between SSB consumption and CLBP, given the limitations of the current study.