Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.206
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Nature ; 617(7961): 499-506, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198311

RESUMEN

Phase segregation is ubiquitously observed in immiscible mixtures, such as oil and water, in which the mixing entropy is overcome by the segregation enthalpy1-3. In monodispersed colloidal systems, however, the colloidal-colloidal interactions are usually non-specific and short-ranged, which leads to negligible segregation enthalpy4. The recently developed photoactive colloidal particles show long-range phoretic interactions, which can be readily tuned with incident light, suggesting an ideal model for studying phase behaviour and structure evolution kinetics5,6. In this work, we design a simple spectral selective active colloidal system, in which TiO2 colloidal species were coded with spectral distinctive dyes to form a photochromic colloidal swarm. In this system, the particle-particle interactions can be programmed by combining incident light with various wavelengths and intensities to enable controllable colloidal gelation and segregation. Furthermore, by mixing the cyan, magenta and yellow colloids, a dynamic photochromic colloidal swarm is formulated. On illumination of coloured light, the colloidal swarm adapts the appearance of incident light due to layered phase segregation, presenting a facile approach towards coloured electronic paper and self-powered optical camouflage.

2.
Circ Res ; 134(11): 1427-1447, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629274

RESUMEN

BACKGROUND: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under ß-glycerophosphate treatment. We integrated Cleavage Under Targets and Tagmentation analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1 attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.


Asunto(s)
Histonas , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Calcificación Vascular , Animales , Calcificación Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Ratones , Humanos , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Células Cultivadas , Proteínas de Unión al ADN , Proteínas del Tejido Nervioso , Receptores de Esteroides , Receptores de Hormona Tiroidea
3.
Proc Natl Acad Sci U S A ; 120(22): e2221127120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216515

RESUMEN

CRISPR/Cas9 genome-editing tools have tremendously boosted our capability of manipulating the eukaryotic genomes in biomedical research and innovative biotechnologies. However, the current approaches that allow precise integration of gene-sized large DNA fragments generally suffer from low efficiency and high cost. Herein, we developed a versatile and efficient approach, termed LOCK (Long dsDNA with 3'-Overhangs mediated CRISPR Knock-in), by utilizing specially designed 3'-overhang double-stranded DNA (odsDNA) donors harboring 50-nt homology arm. The length of the 3'-overhangs of odsDNA is specified by the five consecutive phosphorothioate modifications. Compared with existing methods, LOCK allows highly efficient targeted insertion of kilobase-sized DNA fragments into the mammalian genomes with low cost and low off-target effects, yielding >fivefold higher knock-in frequencies than conventional homologous recombination-based approaches. This newly designed LOCK approach based on homology-directed repair is a powerful tool suitable for gene-sized fragment integration that is urgently needed for genetic engineering, gene therapies, and synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Secuencia de Bases , Edición Génica/métodos , ADN/genética , Recombinación Homóloga , Mamíferos/genética
4.
Plant J ; 117(5): 1558-1573, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113320

RESUMEN

Stalk lodging is a severe problem that limits maize production worldwide, although little attention has been given to its genetic basis. Here we measured rind penetrometer resistance (RPR), an effective index for stalk lodging, in a multi-parent population of 1948 recombinant inbred lines (RILs) and an association population of 508 inbred lines (AMP508). Linkage and association mapping identified 53 and 29 single quantitative trait loci (QTLs) and 50 and 19 pairs of epistatic interactions for RPR in the multi-parent population and AMP508 population, respectively. Phenotypic variation explained by all identified epistatic QTLs (up to ~5%) was much less than that explained by all single additive QTLs (up to ~33% in the multi-parent population and ~ 60% in the AMP508 population). Among all detected QTLs, only eight single QTLs explained >10% of phenotypic variation in single RIL populations. Alleles that increased RPR were enriched in tropical/subtropical (TST) groups from the AMP508 population. Based on genome-wide association studies in both populations, we identified 137 candidate genes affecting RPR, which were assigned to multiple biological processes, such as the biosynthesis of cell wall components. Sixty-six candidate genes were cross-validated by multiple methods or populations. Most importantly, 23 candidate genes were upregulated or downregulated in high-RPR lines relative to low-RPR lines, supporting the associations between candidate genes and RPR. These findings reveal the complex nature of the genetic basis underlying RPR and provide loci or candidate genes for developing elite varieties that are resistant to stalk lodging via molecular breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico , Zea mays/genética , Fenotipo , Ligamiento Genético
5.
Oncologist ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815152

RESUMEN

BACKGROUND: In the KEYNOTE-590 study, first-line pembrolizumab plus chemotherapy provided statistically significant improvement in overall survival, progression-free survival, and objective response rate compared with chemotherapy, with a manageable safety profile in patients with advanced esophageal cancer. Prespecified health-related quality-of-life (HRQoL) outcomes are reported. MATERIALS AND METHODS: Change from baseline to week 18 in the EORTC Quality of Life Questionnaire Core 30 (QLQ-C30) global health status/QoL (GHS/QoL) and QLQ-Esophageal cancer module (OES18) dysphagia, pain, and reflux scales were evaluated. RESULTS: The HRQoL analysis included 730 patients who received treatment and completed ≥1 HRQoL assessment. Least squares mean (LSM) change from baseline to week 18 was similar between treatment groups for QLQ-C30 GHS/QoL and physical functioning and QLQ-OES18 reflux scales. The QLQ-OES18 dysphagia (LSM difference, -5.54; 95% CI, -10.93 to -0.16) and pain (LSM difference, -2.94; 95% CI, -5.86 to -0.02) scales favored pembrolizumab plus chemotherapy over placebo plus chemotherapy. Median time to confirmed deterioration (TTD) was similar between treatment groups for QLQ-C30 GHS/QoL and physical functioning and QLQ-OES18 dysphagia and reflux scales. Compared with chemotherapy, pembrolizumab plus chemotherapy prolonged median TTD, as seen on the QLQ-OES18 pain scale (HR, 0.69; 95% CI, 0.51 to 0.95). CONCLUSION: The use of pembrolizumab plus chemotherapy maintained HRQoL at week 18 relative to baseline and was comparable with placebo plus chemotherapy. These HRQoL results together with published reports of efficacy, support the use of pembrolizumab plus chemotherapy as first-line therapy for advanced/metastatic esophageal cancer. CLINICALTRIALS.GOV ID: NCT03189719.

6.
Biostatistics ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37805939

RESUMEN

Joint modeling of longitudinal data such as quality of life data and survival data is important for palliative care researchers to draw efficient inferences because it can account for the associations between those two types of data. Modeling quality of life on a retrospective from death time scale is useful for investigators to interpret the analysis results of palliative care studies which have relatively short life expectancies. However, informative censoring remains a complex challenge for modeling quality of life on the retrospective time scale although it has been addressed for joint models on the prospective time scale. To fill this gap, we develop a novel joint modeling approach that can address the challenge by allowing informative censoring events to be dependent on patients' quality of life and survival through a random effect. There are two sub-models in our approach: a linear mixed effect model for the longitudinal quality of life and a competing-risk model for the death time and dropout time that share the same random effect as the longitudinal model. Our approach can provide unbiased estimates for parameters of interest by appropriately modeling the informative censoring time. Model performance is assessed with a simulation study and compared with existing approaches. A real-world study is presented to illustrate the application of the new approach.

7.
Plant Biotechnol J ; 22(3): 678-697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37902192

RESUMEN

Abiotic stresses such as salinity, heat and drought seriously impair plant growth and development, causing a significant loss in crop yield and ornamental value. Biotechnology approaches manipulating specific genes prove to be effective strategies in crop trait modification. The Arabidopsis vacuolar pyrophosphatase gene AVP1, the rice SUMO E3 ligase gene OsSIZ1 and the cyanobacterium flavodoxin gene Fld have previously been implicated in regulating plant stress responses and conferring enhanced tolerance to different abiotic stresses when individually overexpressed in various plant species. We have explored the feasibility of combining multiple favourable traits brought by individual genes to acquire superior plant performance. To this end, we have simultaneously introduced AVP1, OsSIZ1 and Fld in creeping bentgrass. Transgenic (TG) plants overexpressing these three genes performed significantly better than wild type controls and the TGs expressing individual genes under both normal and various abiotic stress conditions, exhibited significantly enhanced plant growth and tolerance to drought, salinity and heat stresses as well as nitrogen and phosphate starvation, which were associated with altered physiological and biochemical characteristics and delicately fine-tuned expression of genes involved in plant stress responses. Our results suggest that AVP1, OsSIZ1 and Fld function synergistically to regulate plant development and plant stress response, leading to superior overall performance under both normal and adverse environments. The information obtained provides new insights into gene stacking as an effective approach for plant genetic engineering. A similar strategy can be extended for the use of other beneficial genes in various crop species for trait modifications, enhancing agricultural production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Desarrollo de la Planta , Regulación de la Expresión Génica de las Plantas/genética , Sequías , Proteínas de Plantas/genética
8.
Plant Biotechnol J ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548388

RESUMEN

Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome-wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone-9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.

9.
Blood ; 139(24): 3493-3504, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35344583

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a lethal disorder characterized by hyperinflammation. Recently, ruxolitinib (RUX), targeting key cytokines in HLH, has shown promise for HLH treatment. However, there is a lack of robust clinical trials evaluating its efficacy, especially its utility as a frontline therapy. In this study (www.chictr.org.cn, ChiCTR2000031702), we designed ruxolitinib as a first-line agent for pediatric HLH and stratified the treatment based on its early response. Fifty-two newly diagnosed patients were enrolled. The overall response rate (ORR) of ruxolitinib monotherapy (day 28) was 69.2% (36/52), with 42.3% (22/52) achieving sustained complete remission (CR). All responders achieved their first response to ruxolitinib within 3 days. The response to ruxolitinib was significantly associated with the underlying etiology at enrollment (P = .009). Epstein-Barr virus (EBV)-HLH patients were most sensitive to ruxolitinib, with an ORR of 87.5% (58.3% in CR). After ruxolitinib therapy, 57.7% (30/52) of the patients entered intensive therapy with additional chemotherapy. Among them, 53.3% (16/30) patients achieved CR, and 46.7% (14/30) patients dominated by chronic active EBV infection-associated HLH (CAEBV-HLH) developed refractory HLH by week 8. The median interval to additional treatment since the first ruxolitinib administration was 6 days (range, 3-25 days). Altogether, 73.1% (38/52) of the enrolled patients achieved CR after treatment overall. The 12-month overall survival (OS) for all patients was 86.4% (95% confidence interval [CI], 77.1% to 95.7%). Ruxolitinib had low toxicity and was well tolerated compared with intensive chemotherapy. Our study provides clinical evidence for ruxolitinib as a frontline agent for pediatric HLH. The efficacy was particularly exemplified with stratified regimens based on the early differential response to ruxolitinib. This study was registered in the Chinese Clinical Trials Registry Platform (http://www.chictr.org.cn/) as ChiCTR2000031702.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Niño , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Nitrilos , Pirazoles/efectos adversos , Pirimidinas
10.
Haematologica ; 109(2): 458-465, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470145

RESUMEN

Primary hemophagocytic lymphohistiocytosis (pHLH) is a rare immune disorder and hematopoietic stem cell transplan- tation (HSCT) is the only potentially curative treatment. Given the high pre-HSCT mortality of pHLH patients reported in the HLH-2004 study (17%), more regimens to effectively control the disease and form a bridge with HSCT are needed. We conducted a retrospective study of pHLH children treated by ruxolitinib (RUX)-based regimen. Generally, patients received RUX until HSCT or unacceptable toxic side-effect. Methylprednisolone and etoposide were added sequentially when the disease was suboptimally controlled. The primary end point was 1-year overall survival. Twenty-one pHLH patients (12 previously treated and 9 previously untreated) were included with a median follow-up of 1.4 years. At last follow-up, 17 (81.0%) patients were alive with a 1-year overall survival of 90.5% (95% confidence interval: 84.1-96.9). Within the first 8 weeks, all patients had an objective response, of which 19 (90.5%) achieved complete response (CR) and two (9.5%) achieved partial response (PR) as a best response. Seventeen (81.0%) patients received HSCT, of which 13 (76.5%) had CR, three (17.6%) had PR and one (5.9%) had disease reactivation at the time of HSCT. Fifteen (88.2) patients were alive post- HSCT. Notably, eight (38.1%) patients received zero doses of etoposide, suggesting the potential of RUX-based regimen to reduce chemotherapy intensity. Patients tolerated RUX-based regimen well and the most frequently observed adverse events were hematologic adverse events. Overall, RUX-based regimen was effective and safe and could be used as a bridge to HSCT for pHLH children.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Nitrilos , Pirazoles , Pirimidinas , Niño , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/etiología , Resultado del Tratamiento , Estudios Retrospectivos , Etopósido/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Respuesta Patológica Completa
11.
Ann Hematol ; 103(1): 17-28, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37851074

RESUMEN

To analyze the genetic variation and prognosis of primary hemophagocytic lymphohistiocytosis (pHLH) in children and the clinical features of isolated central nervous system HLH (CNS-HLH). We retrospectively analyzed the clinical and genetic data of 480 HLH children admitted to our hospital from September 2017 to September 2022. There were 66 patients (13.75%) with pHLH, and the median age was 3.21 years (0.17-12.92 years). Variants in UNC13D (22/66, 33.33%), PRF1 (20/66, 30.30%) and XIAP (11/66, 16.67%) were the most common. More CNS involvement was observed in pHLH patients than in secondary hemophagocytic lymphohistiocytosis (sHLH) patients (50% vs. 25.3%, P = 0.001). Eight pHLH patients had isolated CNS-HLH at onset, which progressed to systemic HLH within 10-30 days to several years. Among them, five patients who underwent hematopoietic stem cell transplantation (HSCT) survived without CNS sequelae, and the three patients who did not undergo HSCT died of disease progression or recurrence. Determination of natural killer (NK) cell cytotoxicity and CD107a levels had low sensitivity and specificity in the diagnosis of pHLH, especially in patients with PRF1 and XIAP mutations. The 3-year overall survival (OS) was significantly lower in pHLH patients than in sHLH patients (74.5% ± 14.7% vs. 89.2% ± 3.53%, P = 0.021) and in patients with CNS involvement than in those without (53.8% ± 26.07% vs. 94.4% ± 10.58%, P = 0.012). There was a significant difference in OS among pHLH patients with different gene variants (P = 0.032); patients with PRF1 variants had poor 3-year OS, and patients with XIAP variants had good 3-year OS (50% ± 28.22% and 100%, respectively). pHLH patients with distinct variants have different prognoses. Isolated CNS-HLH patients are easily misdiagnosed, and HSCT may be beneficial for these patients. Determination of NK cell cytotoxicity and CD107a levels cannot precisely distinguish pHLH from sHLH.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Niño , Humanos , Preescolar , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Linfohistiocitosis Hemofagocítica/terapia , Estudios Retrospectivos , Pronóstico , Mutación , Proteínas de la Membrana/genética
12.
Ann Hematol ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494553

RESUMEN

Minimal residual disease (MRD) based risk stratification criteria for specific genetic subtypes remained unclear in childhood acute lymphoblastic leukemia (ALL). Among 723 children with newly diagnosed ALL treated with the Chinese Children Leukemia Group CCLG-2008 protocol, MRD was assessed at time point 1 (TP1, at the end of induction) and TP2 (before consolidation treatment) and the MRD levels significantly differed in patients with different fusion genes or immunophenotypes (P all < 0.001). Moreover, the prognostic impact of MRD varied by distinct molecular subtypes. We stratified patients in each molecular subtype into two MRD groups based on the results. For patients carrying BCR::ABL1 or KMT2A rearrangements, we classified patients with MRD < 10-2 at both TP1 and TP2 as the low MRD group and the others as the high MRD group. ETV6::RUNX1+ patients with TP1 MRD < 10-3 and TP2 MRD-negative were classified as the low MRD group and the others as the high MRD group. For T-ALL, We defined children with TP1 MRD ≥ 10-3 as the high MRD group and the others as the low MRD group. The 10-year relapse-free survival of low MRD group was significantly better than that of high MRD group. We verified the prognostic impact of the subtype-specific MRD-based stratification in patients treated with the BCH-ALL2003 protocol. In conclusion, the subtype-specific MRD risk stratification may contribute to the precise treatment of childhood ALL.

13.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802814

RESUMEN

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Macrófagos , Fagocitosis , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Macrófagos/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Cisplatino/farmacología , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/genética , Eferocitosis
14.
Pediatr Blood Cancer ; 71(6): e30970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556751

RESUMEN

Langerhans cell histiocytosis (LCH) is a rare hematologic neoplasm characterized by the clonal proliferation of Langerhans-like cells. Colony-stimulating factor 1 receptor (CSF1R) is a membrane-bound receptor that is highly expressed in LCH cells and tumor-associated macrophages. In this study, a soluble form of CSF1R protein (sCSF1R) was identified by plasma proteome profiling, and its role in evaluating LCH prognosis was explored. We prospectively measured plasma sCSF1R levels in 104 LCH patients and 10 healthy children using ELISA. Plasma sCSF1R levels were greater in LCH patients than in healthy controls (p < .001) and significantly differed among the three disease extents, with the highest level in MS RO+ LCH patients (p < .001). Accordingly, immunofluorescence showed the highest level of membrane-bound CSF1R in MS RO+ patients. Furthermore, the plasma sCSF1R concentration at diagnosis could efficiently predict the prognosis of LCH patients treated with standard first-line treatment (AUC = 0.782, p < .001). Notably, dynamic monitoring of sCSF1R levels could predict relapse early in patients receiving BRAF inhibitor treatment. In vitro drug sensitivity data showed that sCSF1R increased resistance to Ara-C in THP-1 cells expressing ectopic BRAF-V600E. Overall, the plasma sCSF1R level at diagnosis and during follow-up is of great clinical importance in pediatric LCH patients.


Asunto(s)
Histiocitosis de Células de Langerhans , Receptor de Factor Estimulante de Colonias de Macrófagos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Histiocitosis de Células de Langerhans/diagnóstico , Histiocitosis de Células de Langerhans/patología , Histiocitosis de Células de Langerhans/sangre , Masculino , Femenino , Niño , Pronóstico , Preescolar , Lactante , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/sangre , Adolescente , Estudios Prospectivos , Estudios de Seguimiento
15.
Pediatr Blood Cancer ; : e31099, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845144

RESUMEN

BACKGROUND: The clinical relevance of BRAF-V600E alleles in peripheral blood mononuclear cells (PBMCs) and the prognostic impact of the mutants in cell-free (cf) and PBMC DNAs of Langerhans cell histiocytosis (LCH) have not been fully clarified in pediatric LCH. METHODS: We retrospectively determined the levels of BRAF-V600E mutation in paired plasma and PBMC samples at the time of diagnosis of LCH. Subsequently, we performed a separate or combined analysis of the clinical and prognostic impact of the mutants. RESULTS: We assessed BRAF-V600E mutation in peripheral blood from 94 patients of childhood LCH. Our data showed that cfBRAF-V600E was related to young age, multiple-system (MS) disease, involvements of organs with high risk, increased risk of relapse, and worse progression-free survival (PFS) of patients. We also observed that the presence of BRAF-V600E in PBMCs at baseline was significantly associated with MS LCH with risk organ involvement, younger age, and disease progression or relapse. The coexisting of plasma(+)/PBMC(+) identified 36.2% of the patients with the worst outcome, and the hazard ratio was more significant than either of the two alone or neither, indicating that combined analysis of the mutation in plasma and PBMCs was more accurate to predict relapse than evaluation of either one. CONCLUSIONS: Concurrent assessment of BRAF-V600E mutation in plasma and PBMCs significantly impacted the prognosis of children with LCH. Further prospective studies with larger cohorts need to validate the results of this study.

16.
Exp Cell Res ; 426(2): 113565, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958650

RESUMEN

In recent years, we have realized that extracellular vesicles (EVs) play a critical role in regulating the intercellular communication between tumor and immune cells in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (TDEVs) profoundly affect the functional changes of tumor-associated macrophages (TAMs) and promote their M2 polarization. Meanwhile, macrophages have a strong phagocytic ability in phagocytosing apoptotic cells. Especially in the course of chemotherapy or radiotherapy, TAMs can phagocytose and remove apoptotic tumor cells, showing anti-inflammatory and pro-tumor effects. However, the underlying mechanisms by which TDEVs regulate macrophage phagocytosis of apoptotic tumor cells have not been fully elucidated. In this study, we focused on the effect of colorectal cancer-derived extracellular vesicles (CRC-EVs) on macrophages. We demonstrated that CRC-EVs enhanced macrophage phagocytosis of apoptotic CRC cells. We then determined that heat shock protein 70 (HSP70) carried in CRC-EVs was responsible for this effect by using mass spectrometry-based proteomic analysis and the CRISPR-Cas9 system. Through transcriptome sequencing of macrophages, we found that the enhanced phagocytosis of macrophages was mainly due to the up-regulation of the macrophage receptor with collagenous structure (MARCO). In addition, we confirmed that the up-regulation of MARCO was mediated by the AKT-STAT3 signaling pathway. Taken together, this study revealed a novel EVs-mediated macrophage phagocytosis mechanism involved in the clearance of apoptotic tumor cells in the TME. Targeting TDEVs may have potential therapeutic applications in tumor treatment.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Humanos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteómica , Macrófagos/metabolismo , Fagocitosis , Vesículas Extracelulares/metabolismo , Neoplasias Colorrectales/metabolismo , Microambiente Tumoral
17.
J Pediatr Hematol Oncol ; 46(1): e71-e82, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018972

RESUMEN

BACKGROUND: Accurate histologic and molecular genetic diagnosis is critical for the pathogenesis study of pediatric patients with lymphoblastic lymphoma (LBL). Optical genome mapping (OGM) as all-in-one process allows the detection of most major genomic risk markers, which addresses some of the limitations associated with conventional cytogenomic testing, such as low resolution and throughput, difficulty in ascertaining genomic localization, and orientation of segments in duplication, inversions, and insertions. Here, for the first time, we examined the cytogenetics of 5 children with LBL using OGM. METHODS: OGM was used to analyze 5 samples of pediatric LBL patients treated according to the modified NHL-BFM95 backbone regimen. Whole-exon Sequencing (WES) was used to confirm the existence of structural variants (SVs) identified by OGM with potentially clinical significance on MGI Tech (DNBSEQ-T7) platform. According to the fusion exon sequences revealed by WES, the HBS1L :: AHI1 fusion mRNA in case 4 was amplified by cDNA-based PCR. RESULTS: In total, OGM identified 251 rare variants (67 insertions, 129 deletions, 3 inversion, 25 duplications, 15 intrachromosomal translocations, and 12 interchromosomal translocations) and 229 copy number variants calls (203 gains and 26 losses). Besides all of the reproducible and pathologically significant genomic SVs detected by conventional cytogenetic techniques, OGM identified more SVs with definite or potential pathologic significance that were not detected by traditional methods, including 2 new fusion genes, HBS1L :: AHI1 and GRIK1::NSDHL , which were confirmed by WES and/or Reverse Transcription-Polymerase Chain Reaction. CONCLUSIONS: Our results demonstrate the feasibility of OGM to detect genomic aberrations, which may play an important role in the occurrence and development of lymphomagenesis as an important driving factor.


Asunto(s)
Linfoma no Hodgkin , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Variaciones en el Número de Copia de ADN , Exones , Mapeo Cromosómico
18.
Surg Endosc ; 38(6): 3195-3203, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38632118

RESUMEN

BACKGROUND: We aimed to study the impact of operative time on textbook outcome (TO), especially postoperative complications and length of postoperative stay in minimally invasive esophagectomy. METHODS: Patients undergoing esophagectomy for curative intent within a prospectively maintained database from 2016 to 2022 were retrieved. Relationships between operative time and outcomes were quantified using multivariable mixed-effects models with medical teams random effects. A restricted cubic spline (RCS) plotting was used to characterize correlation between operative time and the odds for achieving TO. RESULTS: Data of 2210 patients were examined. Median operative time was 270 mins (interquartile range, 233-313) for all cases. Overall, 902 patients (40.8%) achieved TO. Among non-TO patients, 226 patients (10.2%) had a major complication (grade ≥ III), 433 patients (19.6%) stayed postoperatively longer than 14 days. Multivariable analysis revealed operative time was associated with higher odds of major complications (odds ratio 1.005, P < 0.001) and prolonged postoperative stay (≥ 14 days) (odds ratio 1.003, P = 0.006). The relationship between operative time and TO exhibited an inverse-U shape, with 298 mins identified as the tipping point for the highest odds of achieving TO. CONCLUSIONS: Longer operative time displayed an adverse influence on postoperative morbidity and increased lengths of postoperative stay. In the present study, the TO displayed an inverse U-shaped correlation with operative time, with a significant peak at 298 mins. Potential factors contributing to prolonged operative time may potentiate targets for quality metrics and risk-adjustment process.


Asunto(s)
Esofagectomía , Hospitales de Alto Volumen , Tiempo de Internación , Tempo Operativo , Complicaciones Posoperatorias , Humanos , Esofagectomía/métodos , Esofagectomía/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Anciano , Tiempo de Internación/estadística & datos numéricos , Hospitales de Alto Volumen/estadística & datos numéricos , Neoplasias Esofágicas/cirugía , Resultado del Tratamiento , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/estadística & datos numéricos , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Estudios Retrospectivos , Ajuste de Riesgo/métodos , Laparoscopía/estadística & datos numéricos , Laparoscopía/métodos , Laparoscopía/efectos adversos
19.
Dig Dis Sci ; 69(2): 437-452, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087130

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a prevalent type of gastrointestinal cancer, and its poor prognosis is mainly attributed to the occurrence of invasion and metastasis. CYP1B1-AS1, as non-coding RNA, plays an important role in tumorigenesis and progression. However, the mechanism by which CYP1B1-AS1 acts in CRC is not yet understood. AIMS: The objective of this study was to investigate how CYP1B1-AS1 contributes to the development of CRC, and provide a base for CRC diagnosis and treatment. METHODS: RT-qPCR was used to detect the expression level of CYP1B1-AS1 in CRC and adjacent tissues. CCK-8, Edu, scratch healing, and transwell experiments were used to detect the changes of proliferation, migration, and invasion ability of CRC cells after overexpression or knockdown of CYP1B1-AS1 respectively. The RNA binding protein NOP58 combined with CYP1B1-AS1 was verified by RIP and RNA Pull-down experiments. Functional recovery experiments validated the interaction between CYP1B1-AS1 and NOP58 in CRC cells. The changes of EMT-related proteins were detected by Western blot, and the half-life of transcription factor SNAIL mRNA were detected by RT-qPCR after overexpression or knockdown of NOP58. RESULTS: CYP1B1-AS1 was found to be significantly downregulated in CRC compared to adjacent noncancerous tissues. Experiments conducted in vitro and in vivo confirmed that upregulation of CYP1B1-AS1 significantly inhibited the proliferation, migration, and invasion of CRC cells. In addition, CYP1B1-AS1 can directly bind to NOP58 and negatively regulate NOP58. The effect of overexpression CYP1B1-AS1 was reversed by NOP58 overexpression. NOP58 regulates the EMT process of CRC cells by affecting the stability of EMT-related transcription factor SNAIL mRNA, and then affects the progress of CRC. CONCLUSION: This research proves that CYP1B1-AS1 can inhibit the occurrence of EMT in CRC by binding with NOP58, thus delaying the progress of CRC. This finding indicates that CYP1B1-AS1 may be a novel biomarker to improve the diagnosis and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , MicroARNs/genética , Factores de Transcripción/genética , Neoplasias Colorrectales/patología , ARN Mensajero , Proliferación Celular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Proteínas Nucleares/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo
20.
Int J Health Geogr ; 23(1): 7, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454436

RESUMEN

Current research on public spaces and mental health often focuses on the independent relationship of one or more social mediators, neglecting the nuanced implications and serial mechanisms inherent in the progressive social process. Using Wuhan city, China, as a study case with multi-source data, this research applies Multilevel Generalized Structural Equation Modeling and deep learning techniques to explore the differential effects of public spaces with varying degrees of publicness (i.e., typical, semi-, and privately owned) on rural migrants' mental health. Crucially, this study scrutinizes both explicit (social interaction) and implicit (perceived integration) social mechanisms to revisit the relationships. The findings reveal that not all public spaces equally influence mental health, with typical and privately owned public spaces conferring profound benefits. Notably, public spaces impact mental health chiefly through perceived integration instead of through direct social interaction. Social interaction improves mental health primarily by enhancing perceived integration, suggesting that meaningful connections beyond superficial encounters are critical. In particular, we observed significant social effects in typical and privately owned public spaces but limited social functionality in semi-public spaces. This evidence contributes to the knowledge required to create supportive social environments within public spaces, integral to nurturing inclusive urban development.


Asunto(s)
Salud Mental , Migrantes , Humanos , Ciudades , Ambiente , China/epidemiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda