Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 997-1004, 2023 Dec 30.
Artículo en Zh | MEDLINE | ID: mdl-38173113

RESUMEN

Melatonin,an endocrine hormone synthesized by the pineal gland,plays an important role in the reproduction.The growth and development of follicles is the basis of female mammalian fertility.Follicles have a high concentration of melatonin.Melatonin receptors exist on ovarian granulosa cells,follicle cells,and oocytes.It regulates the growth and development of these cells and the maturation and atresia of follicles,affecting female fertility.This paper reviews the protective effects and regulatory mechanisms of melatonin on the development of ovarian follicles,granulosa cells,and oocytes and makes an outlook on the therapeutic potential of melatonin for ovarian injury,underpinning the clinical application of melatonin in the future.


Asunto(s)
Melatonina , Animales , Femenino , Melatonina/farmacología , Folículo Ovárico , Oocitos , Células de la Granulosa/fisiología , Mamíferos
2.
J Transl Med ; 19(1): 372, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461927

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) and lanthionine synthetase C-like 2 (LanCL2) genes locate in the same amplicon, and co-amplification of EGFR and LANCL2 is frequent in glioblastoma. However, the prognostic value of LANCL2 and EGFR co-amplification, and their mRNA and protein expression in glioblastoma remain unclear yet. METHODS: This study analyzed the prognostic values of the copy number variations (CNVs), mRNA and protein expression of LANCL2 and EGFR in 575 glioblastoma patients in TCGA database and 100 glioblastoma patients in tumor banks of the Shenzhen Second People's Hospital and the Sun Yat-sen University Cancer Center. RESULTS: The amplification of LANCL2 or EGFR, and their co-amplification were frequent in glioblastoma of TCGA database and our tumor banks. A significant correlation was found between the CNVs of LANCL2 and EGFR (p < 0.001). CNVs of LANCL2 or EGFR were significantly correlated with IDH1/2 mutation but not MGMT promoter methylation. Multivariate analysis showed that LANCL2 amplification was significantly correlated with reduced overall survival (OS) in younger (< 60 years) glioblastoma patients of TCGA database (p = 0.043, HR = 1.657) and our tumor banks (p = 0.018, HR = 2.199). However, LANCL2 or EGFR amplification, and their co-amplification had no significant impact on OS in older (≥ 60 years) or IDH1/2-wild-type glioblastoma patients. mRNA and protein overexpression of LANCL2 and EGFR was also frequently found in glioblastoma. The mRNA expression rather than the protein expression of LANCL2 and EGFR was positively correlated (p < 0.001). However, mRNA or protein expression of EGFR and LANCL2 was not significantly correlated with OS of glioblastoma patients. The protein expression level of LANCL2, rather than EGFR, was elevated in relapsing glioblastoma, compared with newly diagnosed glioblastoma. In addition, the intracellular localization of LanCL2, not EGFR, was associated with the grade of gliomas. CONCLUSIONS: Taken together, amplification and mRNA overexpression of LANCL2 and EGFR, and their co-amplification and co-expression were frequent in glioblastoma patients. Our findings suggest that amplification of LANCL2 and EGFR were the independent diagnostic biomarkers for glioblastoma patients, and LANCL2 amplification was a significant prognostic factor for OS in younger glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas , Receptores ErbB/genética , Glioblastoma , Proteínas de la Membrana/genética , Proteínas de Unión a Fosfato/genética , Anciano , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Variaciones en el Número de Copia de ADN/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Humanos , Mutación , Recurrencia Local de Neoplasia , Pronóstico , ARN Mensajero/genética
3.
Phytother Res ; 35(6): 3390-3405, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33856743

RESUMEN

Glioblastoma multiforme (GBM) is the most frequent, lethal, and aggressive tumor of the central nervous system in adults. In this study, we found for the first time that moschamindole (MCD), a rare phenolic amide with 8/6/6/5/5 rings, is a major bioactive constituent derived from Phragmites communis Trin (Poaceae) that exhibits a potential cytotoxic effect on both TMZ-resistant GBM cell lines and xenograft models. MCD-induced intrinsic apoptosis signals and mitochondrial dysfunction were confirmed by cell cycle arrest, caspase-3/7 activation, and membrane potential depolarization. Furthermore, investigations exploring the mechanism showed that MCD specifically inhibits Mia40-mediated oxidative folding of mitochondrial intermembrane space (IMS) proteins via PCR assay and immunoblot analysis. MCD relies on its positive charge to associate with mitochondrial oxidative respiration, thus blocking energy metabolism and inducing apoptosis. Overexpression and upregulation of Mia40 were proven to reverse MCD-induced apoptosis and were correlated with the chemoresistance of GBM in vitro and in vivo, respectively. Taken together, our study demonstrates that Mia40 is a potential target of the chemoresistance of glioblastoma and suggests that MCD might be a potential agent for the individualized treatment of chemoresistant GBM based on mitochondrial metabolic characteristics and Mia40 expression.


Asunto(s)
Apoptosis/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Mitocondrias/metabolismo , Animales , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Phytother Res ; 33(6): 1736-1747, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31006910

RESUMEN

Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumour. Patients with GBM respond poorly to chemotherapy and have poor survival outcomes. Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), has been shown to contribute to critical processes, such as cell survival, proliferation, and chemotherapy resistance, during glioma progression. In this study, we found that furanodienone (FUR), a diene-type sesquiterpene isolated from the rhizomes of Rhizoma curcumae, exhibited a potential cytotoxic effect on temozolomide (TMZ)-resistant GBM cells in vitro by inhibiting CSPG4 and related signalling pathways. Studies investigating the mechanism demonstrated that FUR suppressed CSPG4-Akt-ERK signalling, inflammatory responses, and cytokine levels but activated caspase-dependent pathways and mitochondrial dysfunction. Furthermore, an immunofluorescence assay and a dual-luciferase reporter assay revealed that inhibition of EGR1-mediated transcription might have contributed to the FUR-dependent blockade of CSPG4 signalling and glioma cell survival. These results established a link between FUR-induced CSPG4 inhibition and the suppression of EGR1-dependent transcription. Attenuation of ERK1/2 and cytokine signalling might have generated the EGR1-dependent negative feedback loop of the CSPG4 pathway during FUR-induced apoptosis. These findings suggested that FUR could be a therapeutic candidate for the treatment of malignant glioma via targeting CSPG4 signalling.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Furanos/farmacología , Glioblastoma/tratamiento farmacológico , Sesquiterpenos/farmacología , Temozolomida/uso terapéutico , Adulto , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , Furanos/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sesquiterpenos/administración & dosificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Temozolomida/administración & dosificación , Transcripción Genética/efectos de los fármacos
5.
Phytother Res ; 31(5): 729-739, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28240396

RESUMEN

Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system (CNS) in adults. Multidrug resistance (MDR) results in undesirable prognosis during GBM chemotherapy. In this study, we determined that Radicol (RAD), a novel trinorguaiane-type sesquiterpene originally isolated from the root of Dictamnus radicis Cortex, exhibited potently cytotoxic effect on temozolomide (TMZ)-resistant GBM cell lines in a dose-dependent manner. Radicol-induced apoptosis was confirmed with Hoechst 33342/propidium iodide and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labelling (TUNEL) staining. Studies investigating the mechanism revealed that RAD triggered an attenuation of protein disulphide isomerase (PDI) and induced the unmitigated unfolded protein response (UPR) and lethal endoplasmic reticulum (ER) stress. Simultaneously, we further demonstrated that RAD suppressed the activation of Akt/mTOR/p70S6K phosphorylation by up-regulating the induction of glycogen synthase kinase-3ß (GSK-3ß). These results established a link between RAD-induced ER stress and inhibition of the Akt/mTOR/p70S6K pathway, and the attenuation of PDI and activation of GSK-3ß might be the synergistic target of antineoplastic effects during RAD-induced apoptosis. These findings suggested that RAD, possessing multiple cytotoxicity targets, low molecular weight and high lipid solubility, could be a promising agent for the treatment of malignant gliomas. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Antineoplásicos/farmacología , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioma/patología , Sesquiterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Dacarbazina/farmacología , Dictamnus/química , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , Fosforilación/efectos de los fármacos , Fitoterapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Sesquiterpenos/química , Sesquiterpenos/clasificación , Serina-Treonina Quinasas TOR , Temozolomida
6.
J Asian Nat Prod Res ; 19(5): 423-435, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27588605

RESUMEN

Plant-derived natural products have been the highly significant sources of novel antitumor agents. The cassane-type diterpenes of genus Caesalpinia have been reported to bear antiproliferative activities toward different types of cancer cells. In this study, we evaluated the antineoplasmic activities of 16 natural origin cassane-type diterpenes isolated from the CHCl3 extract of the seeds of C. minax in pituitary adenomas cells and identified caesalpin G (CAG) showed the strongest cytotoxicity. Moreover, we further investigated the structure-activity relationship and molecular mechanism of these derivatives systematically. The results confirmed the unsaturated lactone-type ring, hydroxyl at C-7, and alkenyl at C-11 or C-14 functionality as critical for anticancer activity in this family of natural products. In addition, the mechanism experiments also demonstrated unfolded protein response and ER stress and Wnt/ß-catenin pathway were involved in the CAG-induced apoptosis.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Caesalpinia/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Medicamentos Herbarios Chinos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Diterpenos/química , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Humanos , Estructura Molecular , Neoplasias Hipofisarias/tratamiento farmacológico , Semillas/química , Relación Estructura-Actividad , Proteínas Wnt/efectos de los fármacos , beta Catenina/efectos de los fármacos
7.
Cell Mol Neurobiol ; 36(1): 113-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26084601

RESUMEN

MicroRNAs can function as oncogenes or tumor suppressors in glioma. Previously, we showed that miR-107 inhibits glioma cell proliferation, migration, and invasion. Since tumor growth and invasion are closely related to angiogenesis, we further examined the role of miR-107 in glioma angiogenesis. In a co-culture of glioma cells and human brain microvascular endothelial cells (HBMVEC), overexpression of miR-107 in glioma cells led to the inhibition of HBMVEC proliferation, migration, and tube formation ability. ELISA, RT-PCR, and western blot assays revealed that upregulation of miR-107 in glioma cells inhibits VEGF expression. Our findings collectively support the critical involvement of miR-107 in glioma cell angiogenesis and highlight its potential as a therapeutic target for glioma.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/irrigación sanguínea , Glioma/genética , MicroARNs/genética , Neovascularización Patológica/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Células HEK293 , Humanos , Ratones Desnudos , MicroARNs/metabolismo , Microvasos/patología
8.
Neurochem Res ; 41(12): 3192-3205, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27632183

RESUMEN

Glioblastoma (GBM) is the most frequent and aggressive tumour in the central nervous system. Many studies have demonstrated that upregulation of the NF-κB onco-pathway is accompanied by the acquisition of Temozolomide (TMZ) resistance in GBM cells. Here, we show that RGFP109, a selective histone deacetylase (HDAC1 and HDAC3) inhibitor, overcomes TMZ resistance and downregulates the expression of NF-κB-regulated pro-survival genes in a TMZ-resistant (TR) GBM cell line. RGFP109 did not alter the phosphorylation levels of NF-κB/p65 or inhibitory κBα (IκBα). Immunofluorescence microscopy showed that RGFP109 does not block the nuclear translocation of NF-κB/p65. However, co-immunoprecipitation assays revealed that RGFP109 induces the hyperacetylation of NF-κB/p65 and histones, and blocks interactions between NF-κB/p65 and its coactivators, p300 and p300/CBP-associated factor (PCAF). These results indicate that RGFP109-mediated post-translational nuclear acetylation may be involved in the regulation of NF-κB. Electrophoretic mobility shift assays revealed that RGFP109 reduces NF-κB/p65 binding to κB-DNA and decreased the transcriptional level of κB-mediated genes, suggesting that RGFP109-induced hyperacetylation leads to attenuated transcription of the κB gene. In addition, RGFP109 elevates the expression of inhibitor of growth 4 (ING4), which is typically downregulated in GBM cells. Importantly, we found that RGFP109 enhances ING4 recognition and binding to NF-κB/p65, which may be positively correlated with reduced interactions between NF-κB/p65 and p300/PCAF, thereby effecting transcription of the κB gene. Finally, we show that knockdown of ING4 with plasmids containing pcDNA3.1-ING4 shRNA abolished the effect of RGFP109. Therefore, ING4 may act as a corepressor and facilitate RGFP109-triggered suppression of the NF-κB pathway. Taken together, our data show that RGFP109, an HDAC inhibitor, in combination with TMZ may be a therapeutic candidate for patients with temozolomide-resistant GBM.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Benzamidas/farmacología , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , FN-kappa B/metabolismo , Acetilación , Transporte Activo de Núcleo Celular , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias del Sistema Nervioso Central , Dacarbazina/farmacología , Sinergismo Farmacológico , Glioblastoma , Proteínas de Homeodominio/metabolismo , Humanos , FN-kappa B/genética , Transducción de Señal , Temozolomida , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Activación Transcripcional , Proteínas Supresoras de Tumor/metabolismo
9.
Biomed Environ Sci ; 28(10): 728-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26582095

RESUMEN

OBJECTIVE: In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. METHODS: We conducted T2-Weighted Magnetic Resonance Imaging (MRI) and 1H-MRS with a 3.0-Tesla animal MRI system to investigate the early microstructural and metabolic profiles in vivo in the striatum of rats following carbon monoxide (CO) poisoning. RESULTS: Compared to baseline, we found significant cortical surface deformation, cerebral edema changes, which were indicated by the unclear gray/white matter border, and lateral ventricular volume changes in the brain. A significant reduction in the metabolite to total creatine (Cr) ratios of N-acetylaspartate (NAA) was observed as early as 1 h after the last CO administration, while the lactate (Lac) levels increased marginally. Both the Lac/Cr and NAA/Cr ratios leveled off at 6 h and showed no subsequent significant changes. In addition, compared to the control, the choline (Cho)/Cr ratio was slightly reduced in the early stages and significantly increased after 6 h. In addition, a pathological examination revealed mild cerebral edema on cessation of the insult and more severe cerebral injury after additional CO poisoning. CONCLUSION: The present study demonstrated that 1H-MRS of the brain identified early metabolic changes after CO poisoning. Notably, the relationship between the increased Cho/Cr ratio in the striatum and delayed neuropsychologic sequelae requires further research.


Asunto(s)
Intoxicación por Monóxido de Carbono/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Animales , Biomarcadores , Masculino , Ratas , Ratas Sprague-Dawley
10.
Cell Physiol Biochem ; 34(3): 1015-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25199566

RESUMEN

BACKGROUND/AIMS: Cajaninstilbene acid (3-hydroxy-4-prenyl-5-methoxystilben-2 -carboxylic acid, CSA), a natural stilbene isolated from the leaves of Cajanus cajan, has attracted considerable attention for its wide range of pharmacological activities. This study investigated whether CSA protects against corticosterone (CORT)-induced injury in PC12 cells and examined the potential mechanisms underlying this protective effect. METHODS: Cell viability and cytotoxicity were detected using a 3-(4,5-desethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay kit, respectively. PC12 cell apoptosis was measured using Hoechst 33342 staining and a DNA fragmentation assay kit, and intracellular Ca(2+) concentrations were assessed by fluorescent labelling. Next, the mitochondrial permeability transition pores (mPTPs) and mitochondrial membrane potentials (∆Ψm) were detected using a colorimetric mPTP detection kit and a 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) kit, respectively. Finally, cytochrome c, caspase-3 and inhibitor of caspase-activated deoxyribonuclease (ICAD) expression levels were monitored by western blot analysis. RESULTS: Treatment with 100 µmol/l CORT induced cytotoxicity in PC12 cells. However, CSA dose-dependently increased cell viability and decreased LDH release as well as CORT-induced apoptosis. Mechanistically, compared with the CORT-treated group, CSA strongly attenuated intracellular Ca(2+) overload and restored mitochondrial functions, including mPTPs and ∆Ψm. Furthermore, the down-regulation of cytochrome c and ICAD protein expression and the blockage of caspase-3 activity were observed upon CSA treatment. CONCLUSIONS: In summary, our data are the first to show that the in vitro antidepressant-like effect of CSA may be attributed to the cytoprotection of neurons and that such neuroprotective mechanisms are correlated with intracellular Ca(2+) homeostasis and mitochondrial apoptotic pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Corticosterona/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Salicilatos/farmacología , Estilbenos/farmacología , Animales , Corticosterona/farmacología , Fragmentación del ADN/efectos de los fármacos , Células PC12 , Ratas
11.
Toxicol Appl Pharmacol ; 271(1): 114-26, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23639522

RESUMEN

Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE-/-mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H2O2)-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H2O2-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H2O2-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Flavonoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Aterosclerosis/patología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Flavonoides/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Myrica/química , Óxido Nítrico/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Front Plant Sci ; 14: 1309038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264031

RESUMEN

Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.

13.
Phytomedicine ; 82: 153434, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33529962

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system in adults. The discovery of novel anti-GBM agents based on the isocitrate dehydrogenase (IDH) mutant phenotypes and classifications have attracted comprehensive attention. PURPOSE: Diterpenoids are a class of naturally occurring 20-carbon isoprenoid compounds, and have previously been shown to possess high cytotoxicity for a variety of human tumours in many scientific reports. In the present study, 31 cassane diterpenoids of four types, namely, butanolide lactone cassane diterpenoids (I) (1-10), tricyclic cassane diterpenoids (II) (11-15), polyoxybutanolide lactone cassane diterpenoids (III) (16-23), and fused furan ring cassane diterpenoids (IV) (24-31), were tested for their anti-glioblastoma activity and mechanism underlying based on IDH1 mutant phenotypes of primary GBM cell cultures and human oligodendroglioma (HOG) cell lines. RESULTS: We confirmed that tricyclic-type (II) and compound 13 (Caesalpin A, CSA) showed the best anti-neoplastic potencies in IDH1 mutant glioma cells compared with the other types and compounds. Furthermore, the structure-relationship analysis indicated that the carbonyl group at C-12 and an α, ß-unsaturated ketone unit fundamentally contributed to enhancing the anti-glioma activity. Studies investigating the mechanism demonstrated that CSA induced oxidative stress via causing glutathione reduction and NOS activation by negatively regulating glutaminase (GLS), which proved to be highly dependent on IDH mutant type glioblastoma. Finally, GLS overexpression reversed the CSA-induced anti-glioma effects in vitro and in vivo, which indicated that the reduction of GLS contributed to the CSA-induced proliferation inhibition and apoptosis in HOG-IDH1-mu cells. CONCLUSION: Therefore, the present results demonstrated that compared with other diterpenoids, tricyclic-type diterpenoids could be a targeted drug candidate for the treatment of secondary IDH1 mutant type glioblastoma through negatively regulating GLS.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Diterpenos/farmacología , Glioblastoma/patología , Glutaminasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Mutación , Línea Celular Tumoral , Humanos , Estrés Oxidativo
14.
Neurochem Int ; 147: 105051, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979572

RESUMEN

Glioblastoma (GBM) is a highly aggressive brain tumor. During screening work, we found a new compound named phragmunis A (PGA), which is derived from the fruitbody of Trogia venenata, exhibits a potential cytotoxic effect on patient-derived recurrent GBM cells and temozolomide (TMZ)-resistant cell lines. The present study was designed to investigate the potential molecular mechanism of the anti-glioma effects of PGA in vitro and in vivo. Studies investigating the mechanism revealed that PGA diminished the binding efficiency of ETS family of transcription factor (ELK1) and Serum response factor (SRF), and suppressed ELK1-SRF complex-dependent transcription, which decreased the transcriptional levels of downstream genes Early growth response protein 1 (EGR1)-Polycomb ring finger (BMI1), thus inducing the imbalanced regulation between Myeloid cell leukaemia-1 (MCL1) and F-Box and WD repeat domain containing 7 (FBXW7). Finally, orthotopic xenograft models were established to confirm the anti-glioma effect of PGA on tumour growth. We showed, for the first time, that the cytotoxic effects of PGA occurred by inducing MCL1 inhibition and FBXW7 activation by blocking ELK1-SRF complex-dependent transcription. The blockage of ELK1-mediated transcription resulted in the suppression of EGR1-BMI1, which led to the upregulation of FBXW7 expression and downregulation of MCL1. These findings suggested that PGA could be a therapeutic drug candidate for the treatment of recurrent GBM by targeting the ELK1-SRF complex.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Regulación de la Expresión Génica/fisiología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Factor de Respuesta Sérica/efectos de los fármacos , Factor de Respuesta Sérica/metabolismo , Proteína Elk-1 con Dominio ets/efectos de los fármacos , Proteína Elk-1 con Dominio ets/metabolismo
15.
Artículo en Zh | MEDLINE | ID: mdl-21241595

RESUMEN

OBJECTIVE: To investigate the startup detail of circulation dysfunction and its role in the progress of delayed neuropsychologic sequelae (DNS) after carbon monoxide (CO) poisoning with comparison with the model of ischemia-reperfusion. METHODS: The ischemia-reperfusion rat model was established by Pulsinelli-Brierley method, and the CO poisoning rats model by i.p. injected with CO repeatedly respectively, and the rats were identified with DNS following the experiment of pathology and the ethnology. RESULTS: The whole blood viscosity, plasma viscosity, hematocrit and fibrinogen increased significantly immediately after reperfusion, and recovered gradually with the ischemia-reperfusion rat model. The whole blood viscosity decreased significantly immediately after CO treated i.p. Especially at low shear rate, the hematocrit also declined remarkably in the early stage after CO treatment. But 1day later, these parameters turned to the trend of the ischemia-reperfusion rats. There was a prominent elevation of both indexes until the 14th day following CO injection i.p. CONCLUSION: There are significantly sustained hyper-coagulation and hyper-viscosity with circulation in rats after CO poisoning compared with ischemia-reperfusion model during the period of DNS, which might contribute to increase cerebral circulation resistance, blocked blood flow, and deteriorate hypoxemia in progression of DNS.


Asunto(s)
Circulación Sanguínea , Intoxicación por Monóxido de Carbono/fisiopatología , Animales , Modelos Animales de Enfermedad , Hemorreología , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/fisiopatología
16.
Front Cell Neurosci ; 13: 61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886573

RESUMEN

Aggregated amyloid-ß protein (Aß) and Aß-induced neuronal apoptosis have been implicated as critical factors in the pathophysiology of Alzheimer's disease (AD). Certain preclinical results have indicated that the increased accumulation of protein aggregates in AD-affected neurons activates the unfolded protein response (UPR), a pathological phenomenon, which predominantly mediates the aberrant endoplasmic reticulum (ER) stress and apoptotic cascades in neuronal cells. In the present study, we confirmed that Santacruzamate A (STA, a natural product isolated from a Panamanian marine cyanobacterium) attenuates Aß protein fragment 25-35 (Aß25-35)-induced toxicity in PC12 cells and rescues cognitive deficits in APPswe/PS1dE9 mice by enhancing ER stress tolerance. We first demonstrated the anti-apoptotic effects of STA by evaluating caspase-3 activity, annexin V/propidium iodide (PI) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Behavioral testing of STA-treated APPswe/PS1dE9 mice showed that the pronounced memory impairments were ameliorated and that the consolidated memories were stably maintained over a 2-week period. The mechanistic studies provided evidence that STA inhibited Aß25-35-induced UPR and ER stress by regulating the ER retention signal (KDEL) receptor, which reinforced the retention of resident chaperones in the ER lumen. Furthermore, STA regulated the expression of the mitochondrial intermembrane space assembly protein 40 (Mia40) and augmenter of liver regeneration (ALR), which ultimately attenuated the mitochondrial fission and apoptosis pathways. Together, our present findings suggest that the KDEL receptor and Mia40-ALR play a role in mitigating Aß25-35-induced neurotoxicity, which might in turn positively regulate learning and memory. These observations support that STA may be a promising agent for reversing the progression of AD.

17.
Brain Behav ; 9(4): e01248, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30834702

RESUMEN

BACKGROUND: Mild hypothermia is wildly used in clinical treatment of traumatic brain injury (TBI). However, the effect of mild hypothermia on endoplasmic reticulum (ER) stress-induced apoptosis after severe TBI is still unknown. METHODS: In the present study, we used BALB/c mice to investigate the efficacy of posttraumatic mild hypothermia in reducing ER stress. Severe TBI was induced by controlled cortical impact injury. Mild hypothermia treatment was performed immediately after surgery and maintained for 4 hr. The animals were euthanized at 1 and 7 days after severe TBI. The expression levels of ER stress marker proteins were evaluated using Western blot and immunofluorescence. Cell apoptosis rate was analyzed by TUNEL staining. Neuronal functions of the mice were assessed using rotarod test and Morris water maze. RESULTS: Our results revealed that mild hypothermia significantly attenuated ER stress marker proteins, including p-eIF2α/eIF2α, ATF4, CHOP and IRE-1α, and reduced apoptosis rate in the pericontusion region at 1 and 7 days after severe TBI. Interestingly, mild hypothermia also prevented the translocation of CHOP into nucleus. In addition, posttraumatic mild hypothermia significantly improved neuronal functions after severe TBI. CONCLUSIONS: Our findings illustrated that mild hypothermia could reduce ER stress-induced apoptosis and improve neuronal functions after severe traumatic brain injury.


Asunto(s)
Apoptosis/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Hipotermia Inducida/métodos , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley
18.
Mol Med Rep ; 16(5): 5908-5914, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849207

RESUMEN

A strategy to suppress the expression of the DNA repair enzyme O6­methylguanine­DNA methyltransferase (MGMT) by inhibition of Wnt/ß­catenin signaling may be useful as a novel treatment for pituitary adenoma. Previous studies have reported that Tanshinone IIA (TSA), a major quinone compound isolated from Salvia miltiorrhiza, had antitumor effects. However, whether TSA has antitumor effects against pituitary adenoma and whether the mechanisms are associated with the Wnt/ß­catenin/MGMT pathway remains to be clarified. In the present study, TSA treatment caused apoptosis in AtT­20 cells in a concentration­dependent manner, as demonstrated by cell viability reduction, phophatidylserine externalization detected by Annexin V staining and mitochondrial membrane potential disruption detected by JC­1 staining, which were associated with activation of caspase­3 and DNA fragmentation detected by TUNEL in AtT­20 cells. T­cell factor (TCF)­lymphoid­enhancing factor (LEF) reporter activity was determined by dual luciferase reporter assay and the interaction between ß­catenin and TCF­4 were detected using a co­immunoprecipitation kit. The results indicated TSA treatment increased ß­catenin phosphorylation, inhibited ß­catenin nuclear translocation, reduced ß­catenin/TCF­4 complex formation and TCF­LEF luciferase reporter activity, and subsequently reduced the expression of cyclin D1 and MGMT. Notably, overexpression of MGMT in ß­catenin knock down AtT­20 cells abrogated the TSA­mediated effects in AtT­20 cells. In conclusion, TSA induced apoptosis via inhibition of Wnt/ß­catenin­dependent MGMT expression, which may provide novel insights into the understanding of the mechanism of the antitumor effects of Salvia miltiorrhiza.


Asunto(s)
Abietanos/farmacología , Antineoplásicos Fitogénicos/farmacología , Corticotrofos/efectos de los fármacos , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Regulación Neoplásica de la Expresión Génica , Salvia miltiorrhiza/química , Proteínas Supresoras de Tumor/genética , beta Catenina/genética , Abietanos/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Corticotrofos/metabolismo , Corticotrofos/patología , Fragmentación del ADN , Metilasas de Modificación del ADN/antagonistas & inhibidores , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Extractos Vegetales/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo
19.
Cancer Lett ; 391: 89-99, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28131906

RESUMEN

Temozolomide (TMZ) is the cornerstone of therapy for glioblastoma multiforme (GBM). However, its efficacy is limited due to the development of multidrug resistance (MDR). In this study, we first identified the occurrence of ER stress-tolerance (ERST) in glioma cells and confirmed that ERST was positively correlated with TMZ resistance. We further showed that the seesaw-effect of HDAC6-p97/VCP (increased HDAC6 and decreased p97/VCP) in glioma cells was crucial to ERST-associated TMZ resistance. Moreover, the combination treatment of Tubastatin A (TUB, a selective inhibitor of HDAC6) and TMZ synergistically overcame ERST, reduced cell viability and induced apoptosis in TMZ-resistant glioma cells. TUB and TMZ triggered pro-apoptotic signals of the unfolded protein response (UPR) and ER stress and reversed the ratio between HDAC6 and p97/VCP, which potentially attenuated the activation of heat shock proteins and mediated the reversal of ERST. The combination treatment also triggered the dissociation of Dynein-HDAC6 and attenuation of the Dynein-Dynactin motor complex. In addition, this treatment induced HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover, which was involved in the degradation and clearance of ubiquitinated misfolded proteins. This effect could be partially reversed by HDAC6 KO and/or p97/VCP overexpression. Therefore, we proposed that glioma cells optimized the clearance of ubiquitinated misfolded proteins via the reinforcement of HDAC6-facilitated autophagy and attenuation of the p97/VCP-mediated ubiquitin-proteasome system (UPS). In conclusion, our findings showed that the balance of HDAC6-p97/VCP was crucial to ERST-associated TMZ resistance and that HDAC6 inhibition might be a synergistic target and strategy along with TMZ for the improvement of clinical glioma treatment.


Asunto(s)
Dacarbazina/análogos & derivados , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Indoles/uso terapéutico , Autofagia , Dacarbazina/administración & dosificación , Dacarbazina/uso terapéutico , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Temozolomida , Transfección , Ubiquitinación
20.
J Exp Clin Cancer Res ; 35(1): 162, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733185

RESUMEN

BACKGROUND: Gliomas are the most common type of primary brain tumour in the central nervous system of adults. The long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) is transcribed from the 5' tip of the HOXA locus. HOTTIP has recently been shown to be dysregulated and play an important role in the progression of several cancers. However, little is known about whether and how HOTTIP regulates glioma development. METHODS: In this study, we assayed the expression of HOTTIP in glioma tissue samples and glioma cell lines using real-time polymerase chain reaction and defined the biological functions of HOTTIP using the CCK-8 assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL assay) and tumour formation assay in a nude mouse model. Finally, we discovered the underlying mechanism using the Apoptosis PCR 384HT Array, Western blot, RNA immunoprecipitation (RIP) and luciferase reporter assay. RESULTS: HOTTIP was aberrantly down-regulated in glioma tissues and glioma cell lines (U87-MG, U118-MG, U251 and A172), and over-expression of HOTTIP inhibited the growth of glioma cell lines in vitro and in vivo. Furthermore, HOTTIP could directly bind to the brain and reproductive expression (BRE) gene and down-regulate BRE gene expression. In addition, we further verified that over-expression of the BRE gene promoted the growth of glioma cell lines in vitro. Finally, over-expression of HOTTIP significantly suppressed the expression of the cyclin A and CDK2 proteins and increased the expression of the P53 protein. However, we found that the over-expression of BRE significantly increased the expression of the cyclin A and CDK2 proteins and suppressed the expression of the P53 protein. Taken together, these findings suggested that high levels of HOTTIP reduced glioma cell growth. Additionally, the mechanism of HOTTIP-mediated reduction of glioma cell growth may involve the suppression of cyclin A and CDK2 protein expression, which increases P53 protein expression via the down-regulation of BRE. CONCLUSIONS: Our studies demonstrated that over-expression of HOTTIP promotes cell apoptosis and inhibits cell growth in U118-MG and U87-MG human glioma cell lines by down-regulating BRE expression to regulate the expression of P53, CDK2 and Cyclin A proteins. The data described in this study indicate that HOTTIP is an interesting candidate for further functional studies in glioma and demonstrate the potential application of HOTTIP in glioma therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Regiones no Traducidas 3' , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda