Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 158(4): 697-698, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126777

RESUMEN

Initiation of meiotic recombination by DNA double-strand break formation is temporally coordinated with replication. Murakami and Keeney show that this coordination requires recruitment of the Dbf4-dependent kinase to the replication fork by the conserved TIM-TIPIN complex. The same mechanism may regulate other important replication-associated processes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 81(20): 4258-4270.e4, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34453891

RESUMEN

Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , ADN Cruciforme/genética , ADN de Hongos/genética , Meiosis , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , ADN Cruciforme/metabolismo , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
3.
Cell ; 147(2): 267-70, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000007

RESUMEN

Two high-resolution maps of meiotic recombination initiation sites across the genomes of budding yeast and mice illuminate broad similarities in the control of meiotic recombination in these diverse species but also highlight key differences. These studies offer new insights into the relationships between recombination, chromosome structure, and genome evolution.


Asunto(s)
Meiosis , Recombinación Genética , Saccharomycetales/citología , Animales , Evolución Biológica , Cromosomas/metabolismo , Humanos , Ratones , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
PLoS Genet ; 18(12): e1010407, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508468

RESUMEN

During meiosis, recombination between homologous chromosomes (homologs) generates crossovers that promote proper segregation at the first meiotic division. Recombination is initiated by Spo11-catalyzed DNA double strand breaks (DSBs). 5' end resection of the DSBs creates 3' single strand tails that two recombinases, Rad51 and Dmc1, bind to form presynaptic filaments that search for homology, mediate strand invasion and generate displacement loops (D-loops). D-loop processing then forms crossover and non-crossover recombinants. Meiotic recombination occurs in two temporally distinct phases. During Phase 1, Rad51 is inhibited and Dmc1 mediates the interhomolog recombination that promotes homolog synapsis. In Phase 2, Rad51 becomes active and functions with Rad54 to repair residual DSBs, making increasing use of sister chromatids. The transition from Phase 1 to Phase 2 is controlled by the meiotic recombination checkpoint through the meiosis-specific effector kinase Mek1. This work shows that constitutive activation of Rad51 in Phase 1 results in a subset of DSBs being repaired by a Rad51-mediated interhomolog recombination pathway that is distinct from that of Dmc1. Strand invasion intermediates generated by Rad51 require more time to be processed into recombinants, resulting in a meiotic recombination checkpoint delay in prophase I. Without the checkpoint, Rad51-generated intermediates are more likely to involve a sister chromatid, thereby increasing Meiosis I chromosome nondisjunction. This Rad51 interhomolog recombination pathway is specifically promoted by the conserved 5'-3' helicase PIF1 and its paralog, RRM3 and requires Pif1 helicase activity and its interaction with PCNA. This work demonstrates that (1) inhibition of Rad51 during Phase 1 is important to prevent competition with Dmc1 for DSB repair, (2) Rad51-mediated meiotic recombination intermediates are initially processed differently than those made by Dmc1, and (3) the meiotic recombination checkpoint provides time during prophase 1 for processing of Rad51-generated recombination intermediates.


Asunto(s)
ADN Helicasas , Meiosis , Recombinasa Rad51 , Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Recombinación Genética/genética
5.
Genes Dev ; 30(6): 687-99, 2016 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-26966246

RESUMEN

We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1-MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Reparación del ADN/genética , Epistasis Genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Mitosis , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Cell ; 57(4): 583-594, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25699707

RESUMEN

The topoisomerase III (Top3)-Rmi1 heterodimer, which catalyzes DNA single-strand passage, forms a conserved complex with the Bloom's helicase (BLM, Sgs1 in budding yeast). This complex has been proposed to regulate recombination by disassembling double Holliday junctions in a process called dissolution. Top3-Rmi1 has been suggested to act at the end of this process, resolving hemicatenanes produced by earlier BLM/Sgs1 activity. We show here that, to the contrary, Top3-Rmi1 acts in all meiotic recombination functions previously associated with Sgs1, most notably as an early recombination intermediate chaperone, promoting regulated crossover and noncrossover recombination and preventing aberrant recombination intermediate accumulation. In addition, we show that Top3-Rmi1 has important Sgs1-independent functions that ensure complete recombination intermediate resolution and chromosome segregation. These findings indicate that Top3-Rmi1 activity is important throughout recombination to resolve strand crossings that would otherwise impede progression through both early steps of pathway choice and late steps of intermediate resolution.


Asunto(s)
ADN-Topoisomerasas de Tipo I/fisiología , Proteínas de Unión al ADN/fisiología , Recombinación Homóloga/fisiología , Meiosis/genética , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Endonucleasas/fisiología , Endonucleasas de ADN Solapado/metabolismo , Endonucleasas de ADN Solapado/fisiología , Resolvasas de Unión Holliday/metabolismo , Resolvasas de Unión Holliday/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Chromosoma ; 128(3): 249-265, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31069484

RESUMEN

We investigated the meiotic role of Srs2, a multi-functional DNA helicase/translocase that destabilises Rad51-DNA filaments and is thought to regulate strand invasion and prevent hyper-recombination during the mitotic cell cycle. We find that Srs2 activity is required for normal meiotic progression and spore viability. A significant fraction of srs2 mutant cells progress through both meiotic divisions without separating the bulk of their chromatin, although in such cells sister centromeres often separate. Undivided nuclei contain aggregates of Rad51 colocalised with the ssDNA-binding protein RPA, suggesting the presence of persistent single-strand DNA. Rad51 aggregate formation requires Spo11-induced DSBs, Rad51 strand-invasion activity and progression past the pachytene stage of meiosis, but not the DSB end-resection or the bias towards interhomologue strand invasion characteristic of normal meiosis. srs2 mutants also display altered meiotic recombination intermediate metabolism, revealed by defects in the formation of stable joint molecules. We suggest that Srs2, by limiting Rad51 accumulation on DNA, prevents the formation of aberrant recombination intermediates that otherwise would persist and interfere with normal chromosome segregation and nuclear division.


Asunto(s)
ADN Helicasas/genética , Meiosis , Recombinasa Rad51/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Helicasas/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Viabilidad Microbiana/genética , Mutación , Agregado de Proteínas , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas
8.
Mol Cell ; 46(1): 43-53, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500736

RESUMEN

The BLM helicase has been shown to maintain genome stability by preventing accumulation of aberrant recombination intermediates. We show here that the Saccharomyces cerevisiae BLM ortholog, Sgs1, plays an integral role in normal meiotic recombination, beyond its documented activity limiting aberrant recombination intermediates. In wild-type meiosis, temporally and mechanistically distinct pathways produce crossover and noncrossover recombinants. Crossovers form late in meiosis I prophase, by polo kinase-triggered resolution of Holliday junction (HJ) intermediates. Noncrossovers form earlier, via processes that do not involve stable HJ intermediates. In contrast, sgs1 mutants abolish early noncrossover formation. Instead, both noncrossovers and crossovers form by late HJ intermediate resolution, using an alternate pathway requiring the overlapping activities of Mus81-Mms4, Yen1, and Slx1-Slx4, nucleases with minor roles in wild-type meiosis. We conclude that Sgs1 is a primary regulator of recombination pathway choice during meiosis and suggest a similar function in the mitotic cell cycle.


Asunto(s)
Intercambio Genético/fisiología , ADN Cruciforme/metabolismo , ADN de Hongos/metabolismo , Profase Meiótica I/fisiología , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN Cruciforme/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Mutación , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Genes Dev ; 23(18): 2237-51, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19759266

RESUMEN

Several protein kinases collaborate to orchestrate and integrate cellular and chromosomal events at the G2/M transition in both mitotic and meiotic cells. During the G2/M transition in meiosis, this includes the completion of crossover recombination, spindle formation, and synaptonemal complex (SC) breakdown. We identified Ipl1/Aurora B kinase as the main regulator of SC disassembly. Mutants lacking Ipl1 or its kinase activity assemble SCs with normal timing, but fail to dissociate the central element component Zip1, as well as its binding partner, Smt3/SUMO, from chromosomes in a timely fashion. Moreover, lack of Ipl1 activity causes delayed SC disassembly in a cdc5 as well as a CDC5-inducible ndt80 mutant. Crossover levels in the ipl1 mutant are similar to those observed in wild type, indicating that full SC disassembly is not a prerequisite for joint molecule resolution and subsequent crossover formation. Moreover, expression of meiosis I and meiosis II-specific B-type cyclins occur normally in ipl1 mutants, despite delayed formation of anaphase I spindles. These observations suggest that Ipl1 coordinates changes to meiotic chromosome structure with resolution of crossovers and cell cycle progression at the end of meiotic prophase.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Complejo Sinaptonémico/metabolismo , Aurora Quinasas , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Leupeptinas/farmacología , Meiosis/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell ; 31(3): 313-23, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691964

RESUMEN

Budding yeast lacking the Sgs1 helicase and the Mus81/Mms4 endonuclease are inviable, and indirect studies implicate homologous recombination gone awry as the cause of death. We show that mutants lacking both enzymes have profound defects in meiotic recombination intermediate metabolism and crossover (CO) formation. Recombination intermediates (joint molecules, JMs) accumulate in these cells, many with structures that are infrequent in wild-type cells. These JMs persist, preventing nuclear division. Using an inducible expression system, we restored Mus81 or Sgs1 to sgs1 mus81 cells at a time when JMs are forming. Mus81 expression did not prevent JM formation but did restore JM resolution, CO formation, and nuclear division. In contrast, Sgs1 expression reduced the extent of JM accumulation. These results indicate that Sgs1 and Mus81/Mms4 collaborate to direct meiotic recombination toward interhomolog interactions that promote proper chromosome segregation, and also indicate that Mus81/Mms4 promotes JM resolution in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Meiosis , RecQ Helicasas/metabolismo , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Transactivadores/metabolismo , Núcleo Celular/enzimología , ADN Cruciforme , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas de ADN Solapado , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Mutación/genética , Fase Paquiteno , Regiones Promotoras Genéticas/genética , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética
11.
Biochem Biophys Res Commun ; 520(4): 682, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31761075
12.
PLoS Genet ; 7(5): e1002083, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21637791

RESUMEN

Accurate segregation of homologous chromosomes of different parental origin (homologs) during the first division of meiosis (meiosis I) requires inter-homolog crossovers (COs). These are produced at the end of meiosis I prophase, when recombination intermediates that contain Holliday junctions (joint molecules, JMs) are resolved, predominantly as COs. JM resolution during the mitotic cell cycle is less well understood, mainly due to low levels of inter-homolog JMs. To compare JM resolution during meiosis and the mitotic cell cycle, we used a unique feature of Saccharomyces cerevisiae, return to growth (RTG), where cells undergoing meiosis can be returned to the mitotic cell cycle by a nutritional shift. By performing RTG with ndt80 mutants, which arrest in meiosis I prophase with high levels of interhomolog JMs, we could readily monitor JM resolution during the first cell division of RTG genetically and, for the first time, at the molecular level. In contrast to meiosis, where most JMs resolve as COs, most JMs were resolved during the first 1.5-2 hr after RTG without producing COs. Subsequent resolution of the remaining JMs produced COs, and this CO production required the Mus81/Mms4 structure-selective endonuclease. RTG in sgs1-ΔC795 mutants, which lack the helicase and Holliday junction-binding domains of this BLM homolog, led to a substantial delay in JM resolution; and subsequent JM resolution produced both COs and NCOs. Based on these findings, we suggest that most JMs are resolved during the mitotic cell cycle by dissolution, an Sgs1 helicase-dependent process that produces only NCOs. JMs that escape dissolution are mostly resolved by Mus81/Mms4-dependent cleavage that produces both COs and NCOs in a relatively unbiased manner. Thus, in contrast to meiosis, where JM resolution is heavily biased towards COs, JM resolution during RTG minimizes CO formation, thus maintaining genome integrity and minimizing loss of heterozygosity.


Asunto(s)
Núcleo Celular/genética , Intercambio Genético , Meiosis , Mitosis , Saccharomyces cerevisiae/genética , Alelos , Segregación Cromosómica , Replicación del ADN , ADN Cruciforme/metabolismo , RecQ Helicasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
13.
PLoS Biol ; 8(10): e1000520, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20976044

RESUMEN

Recombination between homologous chromosomes of different parental origin (homologs) is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs]) show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs) that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold) yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in the rate of inter-sister repair, combined with the destabilization of inter-sister JMs, promotes inter-homolog recombination while retaining the capacity for inter-sister recombination when inter-homolog recombination is not possible.


Asunto(s)
Cromátides/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Meiosis/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Genetics ; 222(1)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35876814

RESUMEN

The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Recombinación Homóloga , Meiosis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Cell Biol ; 5(5): 480-5, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12717442

RESUMEN

During meiosis, two rounds of chromosome segregation occur after a single round of DNA replication, producing haploid progeny from diploid progenitors. Three innovations in chromosome behaviour during meiosis I accomplish this unique division. First, crossovers between maternal and paternal sister chromatids (detected cytologically as chiasmata) bind replicated maternal and paternal chromosomes together. Second, sister kinetochores attach to microtubules from the same pole (mono-polar orientation), causing maternal and paternal centromere pairs (and not sister chromatids) to be separated. Third, sister chromatid cohesion near centromeres is preserved at anaphase I when cohesion along chromosome arms is destroyed. The finding that destruction of mitotic cohesion is regulated by Polo-like kinases prompted us to investigate the meiotic role of the yeast Polo-like kinase Cdc5. We show here that cells lacking Cdc5 synapse homologues and initiate recombination normally, but fail to efficiently resolve recombination intermediates as crossovers. They also fail to properly localize the Lrs4 (ref. 3) and Mam1 (ref. 4) monopolin proteins, resulting in bipolar orientation of sister kinetochores. Cdc5 is thus required both for the formation of chiasmata and for cosegregation of sister centromeres at meiosis I.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero/genética , Segregación Cromosómica/genética , Células Eucariotas/metabolismo , Meiosis/genética , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae , Levaduras/enzimología , Levaduras/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Células Cultivadas , Cromosomas/genética , Replicación del ADN/genética , Técnica del Anticuerpo Fluorescente , Regulación Fúngica de la Expresión Génica/genética , Cinetocoros/metabolismo , Proteínas Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
PLoS Biol ; 5(12): e324, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18076285

RESUMEN

DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Delta mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (> or = 50 kb) "DSB-hot" regions that are separated by "DSB-cold" domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Delta mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)-associated DSBs that accumulate in processing-capable, repair-defective dmc1Delta and dmc1Delta rad51Delta mutants. DSBs were observed at known hot spots, but also in most previously identified "DSB-cold" regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Delta shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Delta, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Hongos/genética , ADN de Cadena Simple/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Centrómero/genética , Cromatografía DEAE-Celulosa , Cromosomas Fúngicos/genética , Replicación del ADN/genética , ADN de Hongos/aislamiento & purificación , ADN de Cadena Simple/aislamiento & purificación , Proteínas de Unión al ADN/genética , Genoma Fúngico/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
17.
G3 (Bethesda) ; 10(8): 2811-2818, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32540865

RESUMEN

The Sgs1 helicase and Top3-Rmi1 decatenase form a complex that affects homologous recombination outcomes during the mitotic cell cycle and during meiosis. Previous studies have reported that Sgs1-Top3-Rmi1 function is regulated by SUMOylation that is catalyzed by the Smc5-Smc6-Mms21 complex. These studies used strains in which SGS1 was C-terminally tagged with three or six copies of a human influenza hemagglutinin-derived epitope tag (3HA and 6HA). They identified SGS1 mutants that affect its SUMOylation, which we will refer to as SGS1 SUMO-site mutants. In previous work, these mutants showed phenotypes consistent with substantial loss of Sgs1-Top3-Rmi1 function during the mitotic cell cycle. We find that the reported phenotypes are largely due to the presence of the HA epitope tags. Untagged SGS1 SUMO-site mutants show either wild-type or weak hypomorphic phenotypes, depending on the assay. These phenotypes are exacerbated by both 6HA and 3HA epitope tags in two different S. cerevisiae strain backgrounds. Importantly, a C-terminal 6HA tag confers strong hypomorphic or null phenotypes on an otherwise wild-type Sgs1 protein. Taken together, these results suggest that the HA epitope tags used in previous studies seriously compromise Sgs1 function. Furthermore, they raise the possibilities either that sufficient SUMOylation of the Sgs1-Top3-Rmi1 complex might still occur in the SUMO-site mutants isolated, or that Smc5-Smc6-Mms21-mediated SUMOylation plays a minor role in the regulation of Sgs1-Top3-Rmi1 during recombination.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Fenotipo , RecQ Helicasas/genética , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación
18.
Methods Mol Biol ; 557: 143-64, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19799181

RESUMEN

DNA double-strand breaks (DSBs) initiate meiotic recombination in eukaryotes. We describe two strategies that use microarrays to determine the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) approach that targets the Spo11 protein, which remains covalently attached to DSB ends in certain mutant backgrounds. The second approach involves BND cellulose enrichment of the single-strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11 removal.


Asunto(s)
Mapeo Cromosómico/métodos , Roturas del ADN de Doble Cadena , Meiosis/genética , Saccharomyces cerevisiae/genética , Técnicas de Cultivo de Célula/métodos , Inmunoprecipitación de Cromatina/métodos , Perfilación de la Expresión Génica/métodos , Genoma Fúngico , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa/métodos , Saccharomyces cerevisiae/crecimiento & desarrollo
19.
Methods Mol Biol ; 557: 209-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19799185

RESUMEN

Joint Molecule (JM) recombination intermediates result from DNA strand-exchange between homologous chromosomes. Physical monitoring of JM formation in budding yeast has provided a wealth of information about the timing and mechanism of meiotic recombination. These assays are especially informative when applied to the analysis of mutants for which genetic analysis of recombination is impossible, i.e. mutants that die during meiosis. This chapter describes three distinct methods to stabilize JMs against thermally driven dissolution as well as electrophoretic approaches to resolve and detect JMs at two well-characterized recombination hotspots.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Meiosis/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Algoritmos , ADN de Hongos/aislamiento & purificación , Electroforesis en Gel de Agar/métodos , Modelos Biológicos , Mapeo Restrictivo/métodos , Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda