Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Ecol Appl ; 29(4): e01882, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30946514

RESUMEN

Most assessments of the effectiveness of river restoration are done at small spatial scales (<10 km) over short time frames (less than three years), potentially failing to capture large-scale mechanisms such as completion of life-history processes, changes to system productivity, or time lags of ecosystem responses. To test the hypothesis that populations of two species of large-bodied, piscivorous, native fishes would increase in response to large-scale structural habitat restoration (reintroduction of 4,450 pieces of coarse woody habitat into a 110-km reach of the Murray River, southeastern Australia), we collected annual catch, effort, length, and tagging data over seven years for Murray cod (Maccullochella peelii) and golden perch (Macquaria ambigua) in a restored "intervention" reach and three neighboring "control" reaches. We supplemented mark-recapture data with telemetry and angler phone-in data to assess the potentially confounding influences of movement among sampled populations, heterogeneous detection rates, and population vital rates. We applied a Bayesian hierarchical model to estimate changes in population parameters including immigration, emigration, and mortality rates. For Murray cod, we observed a threefold increase in abundance in the population within the intervention reach, while populations declined or fluctuated within the control reaches. Golden perch densities also increased twofold in the intervention reach. Our results indicate that restoring habitat heterogeneity by adding coarse woody habitats can increase the abundance of fish at a population scale in a large, lowland river. Successful restoration of poor-quality "sink" habitats for target species relies on connectivity with high-quality "source" habitats. We recommend that the analysis of restoration success across appropriately large spatial and temporal scales can help identify mechanisms and success rates of other restoration strategies such as restoring fish passage or delivering water for environmental outcomes.


Asunto(s)
Ecosistema , Ríos , Animales , Australia , Teorema de Bayes , Peces , Densidad de Población
2.
Sci Total Environ ; 752: 141863, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32889283

RESUMEN

Recognition that many species share key life-history strategies has enabled predictions of responses to habitat degradation or rehabilitation by these species groups. While such responses have been well documented for freshwater fish that exhibit 'periodic' and 'opportunistic' life-history strategies, this is rare for 'equilibrium' life-history, due largely to their longevity and by comparison, more regular and stable levels of recruitment. Unfortunately, this limits the confidence in using life-history strategies to refine water management interventions to rectify the negative impacts of river regulation for these species. We addressed this knowledge gap for Murray cod Maccullochella peelii, a high-profile, long-lived recreationally popular equilibrium species in south-eastern Australia. We used monitoring data collected across a gradient of hydrologically altered rivers over two decades, to test various hypotheses linking recruitment strength with key attributes of the flow regime. Although Murray cod recruited in most years, as expected for an equilibrium species, responses to flow varied among and within rivers among years. We found links between recruitment strength and the magnitude and variation in discharge during the spring spawning period, as well as flows experienced by juvenile fish during summer and winter - the hydrological components most affected by river regulation. However, the specific slopes and directions of some of these links varied idiosyncratically across rivers. Our results emphasise the importance of accounting for flows that influence each of the key life stages during the recruitment process and lend support for managing rivers in accordance with the natural flow regime. It also shows the need for waterway-specific studies and further refinement of existing flow metrics to allow more credible transferability of results. The approach used in this study can also be applied to other species sharing life-history strategies for which long-term monitoring data has been compiled and length-at-age relationships established.


Asunto(s)
Peces , Agua , Animales , Australia , Ecosistema , Ríos , Australia del Sur , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda