Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569447

RESUMEN

High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse. While our model recapitulates the non-metastatic neuroblastoma development seen in the parental transgenic strain, transplantation of primary tumor cells from disease-bearing mice enables longitudinal monitoring of neuroblastoma growth at distinct sites in immune-deficient or immune-competent recipients. The transplanted tumors retain GD2 expression through many rounds of serial transplantation and are sensitive to GD2-targeted immune therapy. With more diverse tissue localization than is seen with human cell line-derived xenografts, this novel model for high-risk neuroblastoma could contribute to the optimization of immune-based treatments for this deadly disease.


Asunto(s)
Neuroblastoma , Ratones , Humanos , Animales , Proteína Proto-Oncogénica N-Myc , Ratones Transgénicos , Neuroblastoma/terapia , Neuroblastoma/tratamiento farmacológico , Adaptación Fisiológica , Aclimatación
2.
Cytometry A ; 101(1): 57-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128309

RESUMEN

With the continued poor outcome of relapsed acute lymphoblastic leukemia (ALL), new patient-specific approaches for disease progression monitoring and therapeutic intervention are urgently needed. Patient-derived xenografts (PDX) of primary ALL in immune-deficient mice have become a powerful tool for studying leukemia biology and therapy response. In PDX mice, the immunophenotype of the patient's leukemia is commonly believed to be stably propagated. In patients, however, the surface marker expression profile of the leukemic population often displays poorly understood immunophenotypic shifts during chemotherapy and ALL progression. We therefore developed a translational flow cytometry platform to study whether the patient-specific immunophenotype is faithfully recapitulated in PDX mice. To enable valid assessment of immunophenotypic stability and subpopulation complexity of the patient's leukemia after xenotransplantation, we comprehensively immunophenotyped diagnostic B-ALL from children and their matched PDX using identical, clinically standardized flow protocols and instrument settings. This cross-standardized approach ensured longitudinal stability and cross-platform comparability of marker expression intensity at high phenotyping depth. This analysis revealed readily detectable changes to the patient leukemia-associated immunophenotype (LAIP) after xenotransplantation. To further investigate the mechanism underlying these complex immunophenotypic shifts, we applied an integrated analytical approach that combined clinical phenotyping depth and high analytical sensitivity with unbiased high-dimensional algorithm-based analysis. This high-resolution analysis revealed that xenotransplantation achieves patient-specific propagation of phenotypically stable B-ALL subpopulations and that the immunophenotypic shifts observed at the level of bulk leukemia were consistent with changes in underlying subpopulation abundance. By incorporating the immunophenotypic complexity of leukemic populations, this novel cross-standardized analytical platform could greatly expand the utility of PDX for investigating ALL progression biology and assessing therapies directed at eliminating relapse-driving leukemic subpopulations.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Células Precursoras de Linfocitos B , Animales , Citometría de Flujo , Xenoinjertos , Humanos , Inmunofenotipificación , Ratones , Trasplante Heterólogo
3.
Prog Mol Subcell Biol ; 59: 181-196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34050867

RESUMEN

The lectin chaperones calreticulin (CALR) and calnexin (CANX), together with their co-chaperone PDIA3, are increasingly implicated in studies of human cancers in roles that extend beyond their primary function as quality control facilitators of protein folding within the endoplasmic reticulum (ER). Led by the discovery that cell surface CALR functions as an immunogen that promotes anti-tumour immunity, studies have now expanded to include their potential uses as prognostic markers for cancers, and in regulation of oncogenic signaling that regulate such diverse processes including integrin-dependent cell adhesion and migration, proliferation, cell death and chemotherapeutic resistance. The diversity stems from the increasing recognition that these proteins have an equally diverse spectrum of subcellular and extracellular localization, and which are aberrantly expressed in tumour cells. This review describes key foundational discoveries and highlight recent findings that further our understanding of the plethora of activities mediated by CALR, CANX and PDIA3.


Asunto(s)
Retículo Endoplásmico , Neoplasias , Biología , Calnexina/genética , Calnexina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Lectinas/genética , Lectinas/metabolismo , Neoplasias/genética , Proteína Disulfuro Isomerasas/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L377-L391, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34105356

RESUMEN

Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-ß1 (TGF-ß1). To determine the role of FAM13A in TGF-ß1 signaling, FAM13A-/- airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles. Wild-type (WT) and FAM13A-/- cells were treated with TGF-ß1, followed by gene and/or protein expression analyses. FAM13A-/- cells augmented TGF-ß1-induced increase in collagen type 1 (COL1A1), matrix metalloproteinase 2 (MMP2), expression compared with WT cells. This effect was mediated by an increase in ß-catenin (CTNNB1) expression in FAM13A-/- cells compared with WT cells after TGF-ß1 treatment. FAM13A overexpression was partially protective from TGF-ß1-induced COL1A1 expression. Finally, we showed that airway epithelial-specific FAM13A protein expression is significantly increased in patients with severe COPD compared with control nonsmokers, and negatively correlated with lung function. In contrast, ß-catenin (CTNNB1), which has previously been linked to be regulated by FAM13A, is decreased in the airway epithelium of smokers with COPD compared with non-COPD subjects. Together, our data showed that FAM13A may be protective from TGF-ß1-induced fibrotic response in the airway epithelium via sequestering CTNNB1 from its regulation on downstream targets. Therapeutic increase in FAM13A expression in the airway epithelium of smokers at risk for COPD, and those with mild COPD, may reduce the extent of airway tissue remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Proteínas Activadoras de GTPasa/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo , Fumar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adulto , Anciano , Línea Celular , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Femenino , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 2 de la Matriz/genética , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Fumar/genética , Fumar/patología , Factor de Crecimiento Transformador beta1/genética , beta Catenina/biosíntesis , beta Catenina/genética
6.
Nat Cell Biol ; 9(4): 415-21, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17369818

RESUMEN

A-kinase anchoring proteins (AKAPs) control the localization and substrate specificity of cAMP-dependent protein kinase (PKA), tetramers of regulatory (PKA-R) and catalytic (PKA-C) subunits, by binding to PKA-R subunits. Most mammalian AKAPs bind Type II PKA through PKA-RII (ref. 2), whereas dual specificity AKAPs bind both PKA-RI and PKA-RII (ref. 3). Inhibition of PKA-AKAP interactions modulates PKA signalling. Localized PKA activation in pseudopodia of migrating cells phosphorylates alpha4 integrins to provide spatial cues governing cell motility. Here, we report that the alpha4 cytoplasmic domain is a Type I PKA-specific AKAP that is distinct from canonical AKAPs in two ways: the alpha4 interaction requires the PKA holoenzyme, and is insensitive to amphipathic peptides that disrupt most PKA-AKAP interactions. We exploited type-specific PKA anchoring peptides to create genetically encoded baits that sequester specific PKA isoforms to the mitochondria and found that mislocalization of Type I, but not Type II, PKA disrupts alpha4 phosphorylation and markedly inhibits the velocity and directional persistence of cell migration.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Integrina alfa4/metabolismo , Animales , Western Blotting , Células CHO , Movimiento Celular , Células Cultivadas , Cromatografía de Afinidad , Cricetinae , Cricetulus , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Perros , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Integrina alfa4/genética , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Fosforilación , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Methods Mol Biol ; 2454: 117-126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33349904

RESUMEN

Various types of stem cells and nonstem cells have been shown to differentiate or transdifferentiate into cardiomyocytes by way of coculture with appropriate inducer cells. Here we describe a method to induce cardiac differentiation in induced pluripotent stem (iPS) cells through the use of coculture with previously differentiated iPS cell-derived cardiomyocytes (iCMs). This differentiation process can be achieved without the use of exogenous pathway inhibitors and morphogens.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Técnicas de Cocultivo , Miocitos Cardíacos
8.
Cells ; 11(3)2022 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-35159191

RESUMEN

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Of the four molecular subgroups, Group 3 MB is the most aggressive and has the worst prognosis. To understand the origins of chemoresistance involving IL-6/STAT3 signaling, we used in vitro co-culture systems to investigate the contribution of microglia as a brain tumor microenvironment cellular source of paracrine cytokines that promotes acquired drug resistance in Group 3 MB. MB cells subjected to co-culture with microglia exhibited increased expression of phosphorylated JAK1 and STAT3, which was correlated with enhanced resistance to vincristine. We found that both microglia and MB cells co-cultured with microglia secreted significant quantities of IL-6, indicating that IL-6 is a paracrine and autocrine cytokine able to initiate and sustain STAT3 activity in MB cells. Surprisingly, IL-6R-/- MB cells, which cannot respond to exogenous IL-6 stimuli, were responsive to microglia co-culture induced activation of STAT3 and chemoresistance. Subsequently, we found that MB cells conditioned in vitro with the IL-6 family cytokines, IL-6, OSM, LIF, or IL-11, exhibited enhanced JAK1/STAT3 activity and chemoresistance. Intriguingly, MB cells conditioned with any one of the IL-6 family cytokine secreted multiple IL-6 family cytokines, implicating a feedback network involving multiple cytokines. The IL-6 family cytokine receptors share a common signal transducing ß-subunit, gp130, which may be targeted to mitigate tumor chemoresistance. We showed that microglia co-culture failed to induce chemoresistance of gp130-/- MB cells, and that combination treatment using gp130 inhibitors, or with the JAK inhibitor ruxolitinib, effectively overcame the observed resistance to vincristine in gp130 expressing MB cells. Our in vitro studies highlight the gp130/JAK/STAT pathway as a therapeutic target in combating acquired treatment resistance in Group 3 MB.


Asunto(s)
Neoplasias Cerebelosas , Receptor gp130 de Citocinas , Meduloblastoma , Factor de Transcripción STAT3 , Microambiente Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Receptor gp130 de Citocinas/metabolismo , Citocinas/metabolismo , Resistencia a Antineoplásicos , Humanos , Interleucina-6/metabolismo , Quinasas Janus/metabolismo , Meduloblastoma/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células Tumorales Cultivadas , Vincristina/farmacología
9.
mBio ; 12(4): e0192021, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34425695

RESUMEN

Human immunodeficiency virus (HIV) remodels the cell surface of infected cells to facilitate viral dissemination and promote immune evasion. The membrane-associated viral protein U (Vpu) accessory protein encoded by HIV-1 plays a key role in this process by altering cell surface levels of multiple host proteins. Using an unbiased quantitative plasma membrane profiling approach, we previously identified CD47 as a putative host target downregulated by Vpu. CD47 is a ubiquitously expressed cell surface protein that interacts with the myeloid cell inhibitory receptor signal regulatory protein-alpha (SIRPα) to deliver a "don't-eat-me" signal, thus protecting cells from phagocytosis. In this study, we investigate whether CD47 modulation by HIV-1 Vpu might promote the susceptibility of macrophages to viral infection via phagocytosis of infected CD4+ T cells. Indeed, we find that Vpu downregulates CD47 expression on infected CD4+ T cells, leading to enhanced capture and phagocytosis by macrophages. We further provide evidence that this Vpu-dependent process allows a C-C chemokine receptor type 5 (CCR5)-tropic transmitted/founder (T/F) virus, which otherwise poorly infects macrophages in its cell-free form, to efficiently infect macrophages. Importantly, we show that HIV-1-infected cells expressing a Vpu-resistant CD47 mutant are less prone to infecting macrophages through phagocytosis. Mechanistically, Vpu forms a physical complex with CD47 through its transmembrane domain and targets the latter for lysosomal degradation. These results reveal a novel role of Vpu in modulating macrophage infection, which has important implications for HIV-1 transmission in early stages of infection and the establishment of viral reservoir. IMPORTANCE Macrophages play critical roles in human immunodeficiency virus (HIV) transmission, viral spread early in infection, and as a reservoir of virus. Selective capture and engulfment of HIV-1-infected T cells was shown to drive efficient macrophage infection, suggesting that this mechanism represents an important mode of infection notably for weakly macrophage-tropic T/F viruses. In this study, we provide insight into the signals that regulate this process. We show that the HIV-1 accessory protein viral protein U (Vpu) downregulates cell surface levels of CD47, a host protein that interacts with the inhibitory receptor signal regulatory protein-alpha (SIRPα), to deliver a "don't-eat-me" signal to macrophages. This allows for enhanced capture and phagocytosis of infected T cells by macrophages, ultimately leading to their productive infection even with transmitted/founder (T/F) virus. These findings provide new insights into the mechanisms governing the intercellular transmission of HIV-1 to macrophages with implications for the establishment of the macrophage reservoir and early HIV-1 dissemination in vivo.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígeno CD47/genética , Regulación hacia Abajo , VIH-1/química , VIH-1/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Macrófagos/virología , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Viroporinas/genética , Linfocitos T CD4-Positivos/virología , Antígeno CD47/inmunología , Células HEK293 , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Células Jurkat , Macrófagos/inmunología , Fagocitosis , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Viroporinas/metabolismo
11.
Anim Cells Syst (Seoul) ; 24(5): 243-252, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33224442

RESUMEN

CD47 is a tumor-associated antigen best known for its ability to bind counter-receptors on the surface of professional phagocytes as an immune-evasion strategy. ⁣Recently, CD47 has been shown to play a role as a signaling receptor, involving a number of cell physiological processes.⁣⁣ This review provides a comprehensive survey of the signaling pathways triggered by CD47 ligand-mediated cell death in tumor cells. Such an understanding should lead to improvement of CD47-targeted anti-tumor therapeutics able to both neutralize the anti-phagocytic role and trigger autonomous tumor cell death.

12.
Cell Death Dis ; 11(12): 1035, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279931

RESUMEN

Medulloblastoma (MB) is a high-grade pediatric brain malignancy that originates from neuronal precursors located in the posterior cranial fossa. In this study, we evaluated the role of STAT3 and IL-6 in a tumor microenvironment mediated drug resistance in human MBs. We established that the Group 3 MB cell line, Med8A, is chemosensitive (hence Med8A-S), and this is correlated with a basal low phosphorylated state of STAT3, while treatment with IL-6 induced robust increases in pY705-STAT3. Via incremental selection with vincristine, we derived the stably chemoresistant variant, Med8A-R, that exhibited multi-drug resistance, enhanced IL-6 induced pY705-STAT3 levels, and increased IL6R expression. Consequently, abrogation of STAT3 or IL6R expression in Med8A-R led to restored chemosensitivity to vincristine, highlighting a prominent role for canonical IL-6/STAT3 signaling in acquired drug resistance. Furthermore, Med8A-S subjected to conditioning exposure with IL-6, termed Med8A-IL6+ cells, exhibited enhanced vincristine resistance, increased expression of pY705-STAT3 and IL6R, and increased secretion of IL-6. When cocultured with Med8A-IL6+ cells, Med8A-S cells exhibited increased pY705-STAT3 and increased IL-6 secretion, suggesting a cytokine feedback loop responsible for amplifying STAT3 activity. Similar IL-6 induced phenomena were also observed in the Group 3 MB cell lines, D283 and D341, including increased pY705-STAT3, drug resistance, IL-6 secretion and IL6R expression. Our study unveiled autocrine IL-6 as a promoter of STAT3 signaling in development of drug resistance, and suggests therapeutic benefits for targeting the IL-6/STAT3 signaling axis in Group 3 MBs.


Asunto(s)
Comunicación Autocrina , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos , Interleucina-6/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/genética , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Niclosamida/farmacología , Niclosamida/uso terapéutico , Receptores de Interleucina-6/metabolismo , Transducción de Señal/efectos de los fármacos , Vincristina/farmacología , Vincristina/uso terapéutico
13.
PLoS One ; 15(4): e0230966, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32243463

RESUMEN

Various types of stem cells and non-stem cells have been shown to differentiate or transdifferentiate into cardiomyocytes by way of co-culture with appropriate inducer cells. However, there is a limited demonstration of a co-culture induction system utilizing stem cell-derived cardiomyocytes as a stimulatory source for cardiac reprogramming (of stem cells or otherwise). In this study, we utilized an inductive co-culture method to show that previously differentiated induced pluripotent stem (iPS) cell-derived cardiomyocytes (iCMs), when co-cultivated with iPS cells, constituted a sufficient stimulatory system to induce cardiac differentiation. To enable tracking of both cell populations, we utilized GFP-labeled iPS cells and non-labeled iCMs pre-differentiated using inhibitors of GSK and Wnt signaling. Successful differentiation was assessed by the exhibition of spontaneous self-contractions, structural organization of α-actinin labeled sarcomeres, and expression of cardiac specific markers cTnT and α-actinin. We found that iCM-iPS cell-cell contact was essential for inductive differentiation, and this required overlaying already adherent iPS cells with iCMs. Importantly, this process was achieved without the exogenous addition of pathway inhibitors and morphogens, suggesting that 'older' iCMs serve as an adequate stimulatory source capable of recapitulating the necessary culture environment for cardiac differentiation.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Actinina/metabolismo , Benzotiazoles/farmacología , Biomarcadores/metabolismo , Comunicación Celular , Diferenciación Celular , Línea Celular , Transdiferenciación Celular , Reprogramación Celular , Técnicas de Reprogramación Celular/métodos , Técnicas de Cocultivo/métodos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Compuestos Organometálicos/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Vía de Señalización Wnt/efectos de los fármacos
14.
Mol Ther Oncolytics ; 16: 207-218, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32123721

RESUMEN

We recently discovered that coxsackievirus B3 (CVB3) is a potent oncolytic virus against KRAS mutant lung adenocarcinoma. Nevertheless, the evident toxicity restricts the use of wild-type (WT)-CVB3 for cancer therapy. The current study aims to engineer the CVB3 to decrease its toxicity and to extend our previous research to determine its safety and efficacy in treating TP53/RB1 mutant small-cell lung cancer (SCLC). A microRNA-modified CVB3 (miR-CVB3) was generated via inserting multiple copies of tumor-suppressive miR-145/miR-143 target sequences into the viral genome. In vitro experiments revealed that miR-CVB3 retained the ability to infect and lyse KRAS mutant lung adenocarcinoma and TP53/RB1-mutant SCLC cells, but with a markedly reduced cytotoxicity toward cardiomyocytes. In vivo study using a TP53/RB1-mutant SCLC xenograft model demonstrated that a single dose of miR-CVB3 via systemic administration resulted in a significant tumor regression. Most strikingly, mice treated with miR-CVB3 exhibited greatly attenuated cardiotoxicities and decreased viral titers compared to WT-CVB3-treated mice. Collectively, we generated a recombinant CVB3 that is powerful in destroying both KRAS mutant lung adenocarcinoma and TP53/RB1-mutant SCLC, with a negligible toxicity toward normal tissues. Future investigation is needed to address the issue of genome instability of miR-CVB3, which was observed in ~40% of mice after a prolonged treatment.

15.
Curr Biol ; 16(18): 1796-806, 2006 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-16979556

RESUMEN

BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.


Asunto(s)
Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/agonistas , Transducción de Señal/fisiología , Animales , Sitios de Unión , Plaquetas/metabolismo , Células CHO , Cricetinae , Cricetulus , Proteínas Fluorescentes Verdes/análisis , Humanos , Modelos Biológicos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Recombinantes de Fusión/análisis , Transducción de Señal/efectos de los fármacos , Talina/metabolismo , Talina/fisiología , Acetato de Tetradecanoilforbol/farmacología , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/fisiología
16.
Front Oncol ; 9: 411, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192123

RESUMEN

Therapy-induced presentation of cell surface calreticulin (CRT) is a pro-phagocytic immunogen beneficial for invoking anti-tumor immunity. Here, we characterized the roles of ERp57 and α-integrins as CRT-interacting proteins that coordinately regulate CRT translocation from the ER to the surface during immunogenic cell death. Using T-lymphoblasts as a genetic cell model, we found that drug-induced surface CRT is dependent on ERp57, while drug-induced surface ERp57 is independent of CRT. Differential subcellular immunostaining assays revealed that ERp57-/- cells have minimal cytosolic CRT, indicating that ERp57 is indispensable for extra-ER accumulation of CRT. Stimulation of integrin activity, with either cell adhesion or molecular agonists, resulted in decreased drug-induced surface CRT and ERp57 levels. Similarly, surface CRT and ERp57 was reduced in cells expressing GFFKR, a conserved α-integrin cytosolic motif that binds CRT. Drug-induced surface ERp57 levels were consistently higher in CRT-/- cells, suggesting integrin inhibition of surface ERp57 is an indirect consequence of α-integrin binding to CRT within the CRT-ERp57 complex. Furthermore, ß1-/- cells with reduced expression of multiple α-integrins, exhibit enhanced levels of drug-induced surface CRT and ERp57. Our findings highlight the coordinate involvement of plasma membrane integrins as inhibitors, and ERp57 originating from the ER as promoters, of CRT translocation from the ER to the cell surface.

17.
Sci Rep ; 8(1): 4304, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523818

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a nuclear and mitochondrial protein that in nuclei and in vitro repairs blocked 3' DNA termini such as 3' phosphotyrosine conjugates resulting from stalling of topoisomerase I-DNA intermediates. Its mutation also causes spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Because Tdp1 colocalizes with mitochondria following oxidative stress, we hypothesized that Tdp1 repairs mitochondrial DNA (mtDNA) and that mtDNA damage mediates entry of Tdp1 into the mitochondria. To test this, we used S. cerevisiae mutants, cultured mouse and human cells, and a Tdp1 knockout mouse. H2O2- and rotenone-induced cellular and intramitochondrial reactive oxygen species (ROS) activated oxidant-responsive kinases P38 and ERK1, and the translocation of Tdp1 from the nucleus to the mitochondria via the TIM/TOM complex. This translocation occurred independently of mtDNA. Within the mitochondria, Tdp1 interacted with Ligase III and reduced mtDNA mutations. Tdp1-deficient tissues had impaired mitochondrial respiration and decreased viability. These observations suggest that Tdp1 maintains mtDNA integrity and support the hypothesis that mitochondrial dysfunction contributes to the pathology of SCAN1.


Asunto(s)
Mitocondrias/metabolismo , Estrés Oxidativo , Hidrolasas Diéster Fosfóricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/metabolismo , Respiración de la Célula , Células Cultivadas , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Saccharomyces cerevisiae , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Acta Biomater ; 70: 98-109, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447960

RESUMEN

Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. STATEMENT OF SIGNIFICANCE: In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications.


Asunto(s)
Materiales Biocompatibles Revestidos , Hidrogeles , Ensayo de Materiales , Alginatos/química , Alginatos/farmacología , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacología , Células HEK293 , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Nylons/química , Nylons/farmacología , Polihidroxietil Metacrilato/química , Polihidroxietil Metacrilato/farmacología
19.
Cell Death Dis ; 9(5): 544, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748606

RESUMEN

CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.


Asunto(s)
Antineoplásicos Inmunológicos/inmunología , Antígeno CD47/inmunología , Recubrimiento Inmunológico , Proteínas de Neoplasias/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Animales , Antineoplásicos Inmunológicos/farmacología , Antígeno CD47/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Epítopos/inmunología , Humanos , Células Jurkat , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
20.
ACS Chem Biol ; 12(12): 3057-3066, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29111666

RESUMEN

The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Fibroblastos/metabolismo , Eliminación de Gen , Ratones , Mutación , Nucleótidos Cíclicos , Unión Proteica , Conformación Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda