RESUMEN
The coronavirus disease 2019 pandemic has resulted in the introduction of several naïve methods of vaccine development, which have been used to prepare novel viral vectors and mRNA-based vaccines. However, reluctance to receive vaccines owing to the uncertainty regarding their safety is prevalent. Therefore, rigorous safety evaluation of vaccines through preclinical toxicity studies is critical to determine the safety profiles of vaccine candidates. This study aimed to evaluate the toxicity profile of HuVac-19, a subunit vaccine of SARS-CoV-2 utilizing the receptor-binding domain as an antigen, in rats, rabbits, and dogs using single- and repeat-dose study designs. Repeat-dose toxicity studies in rats and rabbits showed transient changes in hematological and serum biochemical parameters in the adjuvant and/or vaccine groups; however, these changes were reversed or potentially reversible after the recovery period. Moreover, temporary reversible changes in absolute and relative organ weights were observed in the prostate of rats and the thymus of rabbits. Gross examination of the injection sites in rats and rabbits treated with the adjuvant- and HuVac-19 showed discoloration and foci, whereas histopathological examination showed granulomatous inflammation, inflammatory cell infiltration, and myofiber degeneration/necrosis. This inflammatory response was local, unassociated with other toxicological changes, and resolved. In a pharmacological safety study, no toxicological or physiological changes associated with HuVac-19 administration were observed. In conclusion, HuVac-19 was not associated with any major systemic adverse effects in the general toxicity and safety pharmacology evaluation, demonstrating that HuVac-19 is a vaccine candidate with sufficient capacity to be used in human clinical trials.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Masculino , Humanos , Ratas , Conejos , Animales , Perros , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , SARS-CoV-2 , Modelos Animales , Adyuvantes Inmunológicos , Vacunas de SubunidadRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Asarum heterotropoides var. seoulense (Nakai) Kitag is a traditional herbal medicine used in Korea and China. It is effective in aphthous stomatitis, local anesthesia, headache, toothache, gingivitis, and inflammatory diseases. However, information on the toxicity of the root of Asarum heterotropoides var. seoulense (Nakai) Kitag (AR) is limited. Therefore, preclinical toxicity studies on AR are needed to reduce the risk of excessive intake. AIM OF THE STUDY: We aimed to evaluate genotoxicity and the potential toxicity due to repeated administration of AR powder. MATERIALS AND METHODS: In vitro bacterial reverse mutation assay (Ames), in vitro chromosomal aberration assay (CA), and in vivo micronucleus (MN) assay in ICR mice were conducted. As positive results were obtained in Ames and CA assays, alkaline comet assay and pig-a gene mutation test were conducted for confirmation. For evaluating the general toxicity of AR powder, a 13-week subchronic toxicity test was conducted, after determining the dose by performing a single and a 4-week dose range finding (DRF) test. A total of 152 Sprague-Dawley (SD) rats were orally administered AR powder at doses of 0, 150, 350, 500, 1000, and 2000 mg/kg/day in the 13-week subchronic toxicity test. Hematology, clinical chemistry, urinalysis, organ weight, macro-, and microscopic examination were conducted after rat necropsy. RESULTS: AR powder induced genotoxicity evidenced in the Ames test at 187.5, 750, 375, and 1500 µg/plate of TA100, TA98, TA1537, and E. coli WP2uvrA in the presence and absence of S9, respectively; CA test at 790 µg/mL for 6 h in the presence of S-9; 75 µg/mL for 6 h in the absence of S-9, and 70 µg/mL for 22 h in the absence of S-9 in the stomach in the comet assay but not in MN and pig-a assays. In the 13-week subchronic toxicity study, clinical signs including irregular respiration, noisy respiration, salivation, and decreased body weight or food consumption were observed in males and females in the 2000 mg/kg/day group. In hematology tests, clinical chemistry, urinalysis, organ weight, and macroscopic examination, changes were observed in the dose groups of 500 mg/kg/day and above. Microscopic examination revealed hyperplasia of the stomach as a test-related change. Hepatocellular adenoma and changes in liver-related clinical chemistry parameters were observed. The rat No Observed Adverse Effect Level (NOAEL) was 150 mg/kg/day in males and <150 mg/kg/day in females. CONCLUSIONS: AR powder is potentially toxic to the liver and stomach and should be used with caution in humans. A long-term study on carcinogenicity is necessitated because DNA damage or changes in tissue lesions were observed in SD rats.
Asunto(s)
Asarum , Ratones , Humanos , Masculino , Femenino , Ratas , Animales , Ratas Sprague-Dawley , Pruebas de Mutagenicidad/métodos , Escherichia coli , Polvos , Ratones Endogámicos ICR , Daño del ADN , Aberraciones Cromosómicas/inducido químicamenteRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Platycodon grandiflorus (Jacq.) A.DC. is a well-known traditional herbal medicine administered for bronchitis and inflammatory diseases. Especially, anti-inflammatory effect of fermented P. grandiflorus (Jacq.) A.DC. extract (FPGE) was higher than that of P. grandiflorus (Jacq.) A.DC. extract. However, toxicological information for FPGE is lacking. AIM OF THE STUDY: In this study, we establish a toxicological profile for FPGE by testing genotoxicity, acute and 13-week subchronic toxicity. MATERIALS AND METHODS: FPGE was evaluated with bacterial reverse mutation, chromosome aberration, and micronucleus test. For the acute- and 13-week subchronic toxicity tests, FPGE was administered orally at doses of 0, 750, 1500, and 3000 mg/kg in SD rats. RESULTS: The results of the genotoxic assays indicated that FPGE induced neither mutagenicity nor clastogenicity. The acute toxicity test showed that FPGE did not affect animal mortality, clinical signs, body weight changes, or microscopic findings at ≤ 3000 mg/kg. The approximate lethal dose (ALD) of FPGE in SD rats was >3000 mg/kg. For the 13-week subchronic toxicity assay, no FPGE dose induced any significant change in mortality, clinical signs, body or organ weight, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination in either SD rat sex. The rat no observed adverse effects level (NOAEL) for FPGE was set to 3000 mg/kg. CONCLUSIONS: The present study empirically demonstrated that FPGE has a safe preclinical profile and indicated that it could be safely integrated into health products for atopic dermatitis treatment.
Asunto(s)
Daño del ADN/efectos de los fármacos , Extractos Vegetales/toxicidad , Platycodon/química , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Aberraciones Cromosómicas/efectos de los fármacos , Cricetulus , Ingestión de Alimentos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Femenino , Fermentación , Riñón/efectos de los fármacos , Riñón/patología , Pulmón/efectos de los fármacos , Masculino , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Ratas Sprague-Dawley , Salmonella typhimurium/efectos de los fármacos , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad SubcrónicaRESUMEN
Ginseng is a well-known traditional medicine used in Asian countries for several thousand years, and it is currently applied to medicine, cosmetics, and nutritional supplements due to its many healing and energygiving properties. It is well demonstrated that ginsenosides, the main ingredient of ginseng, produce a variety of pharmacological and therapeutic effects on central nerve system (CNS) disorders, cardiovascular disease, endocrine secretions, aging, and immune function. Korean red ginseng extract is a dietary supplement containing ginsenoside Rb1 and ginsenoside Rg1 extracted from Panax ginseng. While the pharmacokinetics and bioavailability of the extract have been well established, its toxicological properties remain obscure. Thus, four-week oral toxicity studies in rats were conducted to investigate whether Korean red ginseng extract could have a potential toxicity to humans. The test article was administered once daily by oral gavage to four groups of male and female Sprague-Dawley (SD) rats at dose levels of 0, 500, 1,000, and 2,000 mg/kg/day for four weeks. Neither deaths nor clinical symptoms were observed in any group during the experiment. Furthermore, no abnormalities in body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross findings, organ weights, or histopathology were revealed related to the administration of the test article in either sex of any dosed group. Therefore, a target organ was not determined in this study, and the no observed adverse effect level (NOAEL) of Korean red ginseng extract was established to be 2,000 mg/kg/day.