Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Am J Primatol ; 86(1): e23566, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855375

RESUMEN

Recent molecular studies have clarified the overarching taxonomy of capuchin monkeys, but intraspecific genetic diversity remains unexplored for most capuchin species. One example is Sapajus nigritus, the southernmost capuchin monkey, found in Brazil and Argentina; its phenotypic diversity has been recognized as two geographic subspecies, but the intraspecific genetic structure of this taxon is poorly known. Here, we sampled across most of this species' geographic distribution, producing a newly sequenced data set for genetic analyses that included 78 individuals from 14 populations. We investigated the intraspecific diversity, genetic structure, and evolutionary history using three mitochondrial markers. Our results indicated that S. nigritus populations exhibited high levels of genetic structure. We found strong support for two monophyletic clades within this species with a deep phylogenetic split, and clear separation from other related taxa. Vicariance events seem to have played a prevalent role in shaping S. nigritus genetic differentiation. The Paraíba do Sul River may have driven the deep divergence between southern and northern clades, whereas the Tietê River may have had a weaker, more recent effect on the divergence of populations within the southern clade.


Asunto(s)
Cebinae , Humanos , Animales , Filogeografía , Filogenia , Cebus/genética , Estructuras Genéticas , Variación Genética
2.
Mol Phylogenet Evol ; 124: 137-150, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29545109

RESUMEN

Phylogenetic relationships amongst the robust capuchin monkeys (genus Sapajus) are poorly understood. Morphology-based taxonomies have recognized anywhere from one to twelve different species. The current IUCN (2017) classification lists eight robust capuchins: S. xanthosternos, S. nigritus, S. robustus, S. flavius, S. libidinosus, S. cay, S. apella and S. macrocephalus. Here, we assembled the first phylogenomic data set for Sapajus using ultra-conserved elements (UCEs) to reconstruct a capuchin phylogeny. All phylogenomic analyses strongly supported a deep divergence of Sapajus and Cebus clades within the capuchin monkeys, and provided support for Sapajus nigritus, S. robustus and S. xanthosternos as distinct species. However, the UCE phylogeny lumped the putative species S. cay, S. libidinosus, S. apella, S. macrocephalus, and S. flavius together as a single widespread lineage. A SNP phylogeny constructed from the UCE data was better resolved and recovered S. flavius and S. libidinosus as sister species; however, S. apella, S. macrocephalus, and S. cay individuals were recovered in two geographic clades, from northeastern and southwestern Amazon, rather than clustering by currently defined morphospecies. STRUCTURE analysis of population clustering revealed widespread admixture among Sapajus populations within the Amazon and even into the Cerrado and Atlantic Forest. Difficulty in assigning species by morphology may be a result of widespread population admixture facilitated through frequent movement across major rivers and even ecosystems by robust capuchin monkeys.


Asunto(s)
Cebus/clasificación , Cebus/genética , Pool de Genes , Genómica , Filogenia , Animales , Calibración , Cebinae , Ecosistema , Genética de Población , Geografía , Funciones de Verosimilitud , Polimorfismo de Nucleótido Simple/genética , América del Sur
3.
PLoS One ; 16(8): e0254604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34383779

RESUMEN

The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.


Asunto(s)
Cebus/inmunología , Evolución Molecular , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Alelos , Secuencia de Aminoácidos/genética , Animales , Cebus/genética , Costa Rica , Genes MHC Clase II/genética , Genes MHC Clase II/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Humanos , Filogenia , Polimorfismo Genético/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda