Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 6.940
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062135

RESUMEN

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Asunto(s)
Ácido Oléico , Timocitos , Animales , Ratones , Ácido Oléico/metabolismo , Timo , Linfocitos T Reguladores , Diferenciación Celular , Factores de Transcripción Forkhead/genética
2.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215751

RESUMEN

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Asunto(s)
Linfocitos T CD8-positivos , Serotonina , Linfocitos T CD8-positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal
3.
Cell ; 165(5): 1238-1254, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27118425

RESUMEN

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Asunto(s)
Encéfalo/citología , Técnicas de Cultivo de Célula , Modelos Biológicos , Organoides , Virus Zika/fisiología , Reactores Biológicos , Técnicas de Cultivo de Célula/economía , Embrión de Mamíferos , Desarrollo Embrionario , Humanos , Células Madre Pluripotentes Inducidas , Neurogénesis , Neuronas/citología , Organoides/virología , Infección por el Virus Zika/fisiopatología , Infección por el Virus Zika/virología
4.
Nature ; 615(7950): 56-61, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859579

RESUMEN

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

5.
Trends Biochem Sci ; 49(5): 457-469, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531696

RESUMEN

Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Dependovirus/genética , Humanos , Terapia Genética/métodos , Vectores Genéticos/metabolismo , Ingeniería Genética , Animales , Biología Computacional/métodos
6.
Cell ; 153(3): 678-91, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23602153

RESUMEN

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Asunto(s)
Citosina/análogos & derivados , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Técnicas Genéticas , Estudio de Asociación del Genoma Completo , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , Ratones , Elementos Reguladores de la Transcripción , Factores de Transcripción p300-CBP/metabolismo
7.
Mol Cell ; 71(5): 848-857.e6, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30078725

RESUMEN

A ten-eleven translocation (TET) ortholog exists as a DNA N6-methyladenine (6mA) demethylase (DMAD) in Drosophila. However, the molecular roles of 6mA and DMAD remain unexplored. Through genome-wide 6mA and transcriptome profiling in Drosophila brains and neuronal cells, we found that 6mA may epigenetically regulate a group of genes involved in neurodevelopment and neuronal functions. Mechanistically, DMAD interacts with the Trithorax-related complex protein Wds to maintain active transcription by dynamically demethylating intragenic 6mA. Accumulation of 6mA by depleting DMAD coordinates with Polycomb proteins and contributes to transcriptional repression of these genes. Our findings suggest that active 6mA demethylation by DMAD plays essential roles in fly CNS by orchestrating through added epigenetic mechanisms.


Asunto(s)
Adenina/análogos & derivados , Expresión Génica/fisiología , Neuronas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Adenina/metabolismo , Animales , Metilación de ADN/fisiología , Desmetilación , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Epigénesis Genética/fisiología , Perfilación de la Expresión Génica/métodos , Genoma/fisiología
8.
Proc Natl Acad Sci U S A ; 120(39): e2307722120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725654

RESUMEN

Single-cell RNA-seq (scRNA-seq) analysis of multiple samples separately can be costly and lead to batch effects. Exogenous barcodes or genome-wide RNA mutations can be used to demultiplex pooled scRNA-seq data, but they are experimentally or computationally challenging and limited in scope. Mitochondrial genomes are small but diverse, providing concise genotype information. We developed "mitoSplitter," an algorithm that demultiplexes samples using mitochondrial RNA (mtRNA) variants, and demonstrated that mtRNA variants can be used to demultiplex large-scale scRNA-seq data. Using affordable computational resources, mitoSplitter can accurately analyze 10 samples and 60,000 cells in 6 h. To avoid the batch effects from separated experiments, we applied mitoSplitter to analyze the responses of five non-small cell lung cancer cell lines to BET (Bromodomain and extraterminal) chemical degradation in a multiplexed fashion. We found the synthetic lethality of TOP2A inhibition and BET chemical degradation in BET inhibitor-resistant cells. The result indicates that mitoSplitter can accelerate the application of scRNA-seq assays in biomedical research.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , ARN Mitocondrial , Análisis de Expresión Génica de una Sola Célula , Mitocondrias/genética
9.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38824941

RESUMEN

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Quimioradioterapia , Quimioterapia de Inducción , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Persona de Mediana Edad , Masculino , Femenino , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/tratamiento farmacológico , Adulto , China/epidemiología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/terapia , Quimioradioterapia/métodos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anciano , Cisplatino/uso terapéutico , Cisplatino/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Desoxicitidina/administración & dosificación , Adulto Joven , Adolescente , Supervivencia sin Progresión
10.
Nat Mater ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831130

RESUMEN

The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.

11.
Plant Cell ; 34(5): 2038-2055, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35188198

RESUMEN

In tomato (Solanum lycopersicum) and other plants, the photoreceptor UV-RESISTANCE LOCUS 8 regulates plant UV-B photomorphogenesis by modulating the transcription of many genes, the majority of which depends on the transcription factor ELONGATED HYPOCOTYL 5 (HY5). HY5 transcription is induced and then rapidly attenuated by UV-B. However, neither the transcription factors that activate HY5 transcription nor the mechanism for its attenuation during UV-B signaling is known. Here, we report that the tomato B-BOX (BBX) transcription factors SlBBX20 and SlBBX21 interact with SlHY5 and bind to the SlHY5 promoter to activate its transcription. UV-B-induced SlHY5 expression and SlHY5-controlled UV-B responses are normal in slbbx20 and slbbx21 single mutants, but strongly compromised in the slbbx20 slbbx21 double mutant. Surprisingly, UV-B responses are also compromised in lines overexpressing SlBBX20 or SlBBX21. Both SlHY5 and SlBBX20 bind to G-box1 in the SlHY5 promoter. SlHY5 outcompetes SlBBX20 for binding to the SlHY5 promoter in vitro, and inhibits the association of SlBBX20 with the SlHY5 promoter in vivo. Overexpressing 35S:SlHY5-FLAG in the WT background inhibits UV-B-induced endogenous SlHY5 expression. Together, our results reveal the critical role of the SlBBX20/21-SlHY5 module in activating the expression of SlHY5, the gene product of which inhibits its own gene transcription under UV-B, forming an autoregulatory negative feedback loop that balances SlHY5 transcription in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retroalimentación , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Rayos Ultravioleta
12.
Mol Ther ; 32(4): 878-889, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311850

RESUMEN

Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.


Asunto(s)
Cardiopatías , Humanos , Adenina , Epigénesis Genética , Fibrosis
13.
Mol Ther ; 32(5): 1252-1265, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504519

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has made great progress in treating lymphoma, yet patient outcomes still vary greatly. The lymphoma microenvironment may be an important factor in the efficacy of CAR T therapy. In this study, we designed a highly multiplexed imaging mass cytometry (IMC) panel to simultaneously quantify 31 biomarkers from 13 patients with relapsed/refractory diffuse large B cell lymphoma (DLBCL) who received CAR19/22 T cell therapy. A total of 20 sections were sampled before CAR T cell infusion or after infusion when relapse occurred. A total of 35 cell clusters were identified, annotated, and subsequently redefined into 10 metaclusters. The CD4+ T cell fraction was positively associated with remission duration. Significantly higher Ki67, CD57, and TIM3 levels and lower CD69 levels in T cells, especially the CD8+/CD4+ Tem and Te cell subsets, were seen in patients with poor outcomes. Cellular neighborhood containing more immune cells was associated with longer remission. Fibroblasts and vascular endothelial cells resided much closer to tumor cells in patients with poor response and short remission after CAR T therapy. Our work comprehensively and systematically dissects the relationship between cell composition, state, and spatial arrangement in the DLBCL microenvironment and the outcomes of CAR T cell therapy, which is beneficial to predict CAR T therapy efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral/inmunología , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/inmunología , Análisis de la Célula Individual/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Femenino , Masculino , Resultado del Tratamiento , Persona de Mediana Edad , Adulto , Biomarcadores de Tumor , Anciano
14.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086932

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) has become a powerful tool for biomedical research by providing a variety of valuable information with the advancement of computational tools. Lineage analysis based on scRNA-seq provides key insights into the fate of individual cells in various systems. However, such analysis is limited by several technical challenges. On top of the considerable computational expertise and resources, these analyses also require specific types of matching data such as exogenous barcode information or bulk assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) data. To overcome these technical challenges, we developed a user-friendly computational algorithm called "LINEAGE" (label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis). Aiming to screen out endogenous markers of lineage located on mitochondrial reads from label-free scRNA-seq data to conduct lineage inference, LINEAGE integrates a marker selection strategy by feature subspace separation and de novo "low cross-entropy subspaces" identification. In this process, the mutation type and subspace-subspace "cross-entropy" of features were both taken into consideration. LINEAGE outperformed three other methods, which were designed for similar tasks as testified with two standard datasets in terms of biological accuracy and computational efficiency. Applied on a label-free scRNA-seq dataset of BRAF-mutated cancer cells, LINEAGE also revealed genes that contribute to BRAF inhibitor resistance. LINEAGE removes most of the technical hurdles of lineage analysis, which will remarkably accelerate the discovery of the important genes or cell-lineage clusters from scRNA-seq data.


Asunto(s)
Linaje de la Célula/genética , ARN Mitocondrial/genética , Análisis de Secuencia de ARN/métodos , Algoritmos , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , ARN/análisis , Análisis de la Célula Individual/métodos , Secuenciación del Exoma/métodos
15.
J Lipid Res ; 65(4): 100527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447926

RESUMEN

Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.


Asunto(s)
Dieta Occidental , Factor Nuclear 3-gamma del Hepatocito , Hígado , Ratones Endogámicos C57BL , Obesidad , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Ratones , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Hígado/metabolismo , Dieta Occidental/efectos adversos , Masculino , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Ácidos y Sales Biliares/metabolismo
16.
J Biol Chem ; 299(7): 104873, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257820

RESUMEN

Dysregulation of long noncoding RNAs (lncRNAs) contributes to tumorigenesis by modulating specific cancer-related pathways, but the roles of N6-methyladenosine (m6A)-enriched lncRNAs and underlying mechanisms remain elusive in nasopharyngeal carcinoma (NPC). Here, we reanalyzed the previous genome-wide analysis of lncRNA profiles in 18 pairs of NPC and normal tissues as well as in ten paired samples from NPC with or without post-treatment metastases. We discerned that an oncogenic m6A-enriched lncRNA, LINC00839, which was substantially upregulated in NPC and correlated with poor clinical prognosis, promoted NPC growth and metastasis both in vitro and in vivo. Mechanistically, by using RNA pull-down assay combined with mass spectrometry, we found that LINC00839 interacted directly with the transcription factor, TATA-box binding protein associated factor (TAF15). Besides, chromatin immunoprecipitation and dual-luciferase report assays demonstrated that LINC00839 coordinated the recruitment of TAF15 to the promoter region of amine oxidase copper-containing 1 (AOC1), which encodes a secreted glycoprotein playing vital roles in various cancers, thereby activating AOC1 transcription in trans. In this study, potential effects of AOC1 in NPC progression were first proposed. Moreover, ectopic expression of AOC1 partially rescued the inhibitory effect of downregulation of LINC00839 in NPC. Furthermore, we showed that silencing vir-like m6A methyltransferase-associated (VIRMA) and insulin-like growth factor 2 mRNA-binding proteins 1 (IGF2BP1) attenuated the expression level and RNA stability of LINC00839 in an m6A-dependent manner. Taken together, our study unveils a novel oncogenic VIRMA/IGF2BP1-LINC00839-TAF15-AOC1 axis and highlights the significance and prognostic value of LINC00839 expression in NPC carcinogenesis.


Asunto(s)
Neoplasias Nasofaríngeas , ARN Largo no Codificante , Factores Asociados con la Proteína de Unión a TATA , Humanos , Aminas , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Oxidorreductasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo
17.
Plant J ; 113(3): 478-492, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495441

RESUMEN

COP1 is a critical repressor of plant photomorphogenesis in darkness. However, COP1 plays distinct roles in the photoreceptor UVR8 pathway in Arabidopsis thaliana. COP1 interacts with ultraviolet B (UV-B)-activated UVR8 monomers and promotes their retention and accumulation in the nucleus. Moreover, COP1 has a function in UV-B signaling, which involves the binding of its WD40 domain to UVR8 and HY5 via conserved Val-Pro (VP) motifs of these proteins. UV-B-activated UVR8 interacts with COP1 via both the core domain and the VP motif, leading to the displacement of HY5 from COP1 and HY5 stabilization. However, it remains unclear whether the function of COP1 in UV-B signaling is solely dependent on its VP motif binding capacity and whether UV-B regulates the subcellular localization of COP1. Based on published structures of the COP1 WD40 domain, we generated a COP1 variant with a single amino acid substitution, COP1C509S , which cannot bind to VP motifs but retains the ability to interact with the UVR8 core domain. UV-B only marginally increased nuclear YFP-COP1 levels and significantly promoted YFP-COP1 accumulation in the cytosol, but did not exert the same effects on YFP-COP1C509S . Thus, the full UVR8-COP1 interaction is important for COP1 accumulation in the cytosol. Notably, UV-B signaling including activation of HY5 transcription was obviously inhibited in the Arabidopsis lines expressing YFP-COP1C509S , which cannot bind VP motifs. We conclude that the full binding of UVR8 to COP1 leads to the predominant accumulation of COP1 in the cytosol and that COP1 has an additional function in UV-B signaling besides VP binding-mediated protein destabilization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transducción de Señal , Ubiquitina-Proteína Ligasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
18.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37247644

RESUMEN

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Homeostasis , Calor , Factor I del Crecimiento Similar a la Insulina/genética , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteoma/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
19.
Anal Chem ; 96(16): 6301-6310, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597061

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , ARN/genética , Análisis de Secuencia de ARN , Neoplasias Renales/genética , Neoplasias Renales/patología , Secuenciación de Nucleótidos de Alto Rendimiento
20.
J Gene Med ; 26(1): e3616, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049938

RESUMEN

BACKGROUND: Upper tract urothelial carcinoma (UTUC) is a rare tumor with extraordinarily different features between Eastern and Western countries. Vascular endothelial growth factor-A (VEGFA) was originally identified as a secreted signaling protein and regulator of vascular development and cancer progression. In this study, we aimed to elucidate the molecular mechanisms underlying the regulation of VEGFA by microRNA in UTUC. METHODS: VEGFA expression was evaluated by immunohistochemistry in 140 human UTUC tissue samples. Next, we assessed the regulatory relationship between VEGFA and miR-299-3p by real-time PCR, western blotting, ELISA and dual-luciferase reporter assays using two UTUC cell lines. The role of miR-299-3p/VEGFA in cell proliferation, motility, invasion, and tube formation was analyzed in vitro. RESULTS: High VEGFA expression was significantly associated with tumor stage, grade, distant metastasis and cancer-related death and correlated with poor progression-free and cancer-specific survival. VEGFA knockdown repressed proliferation, migration, invasion and angiogenesis in UTUC cell lines. miR-299-3p significantly reduced VEGFA protein expression and miR-299-3p overexpression inhibited VEGFA mRNA and protein expression by directly targeting its 3'-UTR. Functional studies indicated that VEGFA overexpression reversed the miR-299-3p-mediated suppression of tumor cell proliferation, migration, invasion and angiogenesis. In addition, miR-299-3p/VEGFA suppressed cellular functions in UTUC by modulating the expression of P18 and cyclin E2. CONCLUSIONS: Our findings suggest that miR-299-3p possibly suppresses UTUC cell proliferation, motility, invasion and angiogenesis via VEGFA. VEGFA may act as a prognostic predictor, and both VEGFA and miR-299-3p could be potential therapeutic targets for UTUC.


Asunto(s)
Carcinoma de Células Transicionales , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Angiogénesis , Carcinoma de Células Transicionales/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Vejiga Urinaria/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda