Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Infect Immun ; 91(11): e0010323, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37874164

RESUMEN

In eukaryotes, autophagy is induced as an innate defense mechanism against pathogenic microorganisms by self-degradation. Although trichinellosis is a foodborne zoonotic disease, there are few reports on the interplay between Trichinella spiralissurvival strategies and autophagy-mediated host defense. Therefore, this study focused on the association between T. spiralis and autophagy of host small intestinal cells. In this study, the autophagy-related indexes of host small intestinal cells after T. spiralis infection were detected using transmission electron microscopy, hematoxylin and eosin staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting. The results showed that autophagosomes and autolysosomes were formed in small intestinal cells, intestinal villi appeared edema, epithelial compactness was decreased, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was expressed in lamina propria stromal cells of small intestine, and the expression of autophagy-related genes and proteins was changed significantly, indicating that T. spiralis induced autophagy of host small intestinal cells. Then, the effect of T. spiralis on autophagy-related pathways was explored by Western blotting. The results showed that the expression of autophagy-related pathway proteins was changed, indicating that T. spiralis regulated autophagy by affecting autophagy-related pathways. Finally, the roles of T. spiralis serine protease inhibitors (TsSPIs), such as T. spiralis Kazal-type SPI (TsKaSPI) and T. spiralis Serpin-type SPI (TsAdSPI), were further discussed in vitro and in vivo experiments. The results revealed that TsSPIs induced autophagy by influencing autophagy-related pathways, and TsAdSPI has more advantages. Overall, our results indicated that T. spiralis induced autophagy of host small intestinal cells, and its TsSPIs play an important role in enhancing autophagy flux by affecting autophagy-related pathways. These findings lay a foundation for further exploring the pathogenesis of intestinal dysfunction of host after T. spiralis infection, and also provide some experimental and theoretical basis for the prevention and treatment of trichinellosis.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Ratones , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Triquinelosis/metabolismo , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo , Intestino Delgado , Autofagia , Ratones Endogámicos BALB C
2.
Int Immunopharmacol ; 119: 110101, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058749

RESUMEN

Allergic asthma is a chronic, heterogeneous and inflammatory respiratory disease, and there are few medicines at present. An increasing number of studies indicate that Trichinella spiralis (T. spiralis) and its excretory-secretory (ES) antigens are inflammatory modulator. Therefore, this study focused on the effects of T. spiralis ES antigens on allergic asthma. Asthma model was established by sensitizing mice with ovalbumin antigen (OVA) and aluminum hydroxide (Al[OH]3), the asthmatic mice were interfered using T. spiralis 43 kDa protein (Ts43), T. spiralis 49 kDa protein (Ts49), and T. spiralis 53 kDa protein (Ts53), the important components of ES antigens, to establish ES antigens intervention models. Then, asthma symptom changes, weight changes, and lung inflammation of mice were evaluated. The results showed that ES antigens could relieve symptoms, weight loss, and lung inflammation caused by asthma in the mice, and the effect of combined intervention of Ts43, Ts49, and Ts53 was better. Finally, the effects of ES antigens on type 1 helper T (Th1) and type 2 helper T (Th2) immune responses, and the differentiation direction of T lymphocytes in mice were discussed by detecting Th1 and Th2 cell-related factors and the ratio of CD4+/CD8+ T cells. The results suggested that the ratio of CD4+/CD8+ T cells decreased and the ratio of Th1/Th2 cells increased. In conclusion, this study indicated that T. spiralis ES antigens could mitigate allergic asthma in the mice by changing the differentiation direction of CD4+ and CD8+ T cells and regulating the imbalance of Th1/Th2 cells ratio.


Asunto(s)
Asma , Neumonía , Trichinella spiralis , Triquinelosis , Animales , Ratones , Antígenos Helmínticos , Asma/terapia , Asma/metabolismo , Neumonía/metabolismo , Células Th2
3.
Bot Stud ; 58(1): 30, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28710720

RESUMEN

BACKGROUND: Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. RESULTS: The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. CONCLUSIONS: The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda