Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Clin Lab ; 66(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073965

RESUMEN

BACKGROUND: CC chemokine ligand-18 (CCL-18) and CX3 chemokine ligand 1 (CX3CL1) are key factors of vascular and tissue injury in chronic respiratory diseases. Here, we investigated the value of CCL-18 and CX3CL1 in diagnosis and prognosis of patients with chronic obstructive pulmonary disease and chronic cor pulmonale (COPD&CCP). METHODS: First, we investigated the expression profile of CCL-18 and CX3CL1 in serum of COPD&CCP patients. Then the relationship of the level of CCL-18 and CX3CL1 with clinicopathological characteristics was analyzed. Subsequently, we evaluated the diagnostic accuracy of CCL-18 and CX3CL1 to discriminate COPD&CCP. The prognostic value and therapy outcome were also evaluated. RESULTS: Compared to healthy subjects, the level of CCL-18 (8.01 ± 2.01 ng/mL) and CX3CL1 (2,096.11 ± 306.09 ng/mL) was significantly increased in COPD&CCP patients (p < 0.05). The upregulation of CCL-18 and CX3CL1 was significantly correlated with clinicopathological characteristics including CRP, IL-6, FIB, NT-proBNP, FEV1, FEV1/FVC, PASP, LVEF, and T wave anomaly. The combination of CCL-18 and CX3CL1 showed high precision for discriminating COPD&CCP with high AUC values (0.828), sensitivity (66.1%), and specificity (92.5%). Furthermore, CCL-18 and CX3CL1 acted as independent factors which lead to poor clinical benefits and indicated poor prognosis of COPD&CCP patients. CONCLUSIONS: Taken together, our results indicated that CCL-18 and CX3CL1 could act as suitable biomarkers in prognosis and prognostic evaluation of COPD&CCP.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Cardiopulmonar , Quimiocina CX3CL1 , Quimiocinas CC , Humanos , Proyectos Piloto , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico
2.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3811-3818, 2018 Nov.
Artículo en Zh | MEDLINE | ID: mdl-30460828

RESUMEN

Insect herbivore feeding causes mechanical damage to plants, which can activate plant defense responses. Whether symbiosis with beneficial microorganisms can enhance the responses of plants to mechanical damage is of importance for plant anti-herbivore resistance. In this study, defense responses of tomato (Lycopersicon esculentum) plants to mechanical wounding was investigated after the tomato roots being infected by arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The results showed that in response to leaf mechanical wounding, the activities of phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and catalase (CAT) in the leaves of tomato pre-inoculated with AMF (FD), as well as transcript levels of genes encoding phenylalanine ammonia lyase (PAL) and ß-1,3-glucanase (PR2) in the leaves and roots were significantly higher in relative to sole mechanical wounding (D), sole mycorrhizal inoculation (F), and control without mechanical wounding and mycorrhizal inoculation (CK). Although the activities of protective enzyme and transcript levels of the two defense-related genes were induced in the plants of sole mechanical wounding (D) and sole mycorrhizal inoculation (F), the induction was faster and stronger in the plants with leaf mechanical wounding and mycorrhizal pre-inoculation (FD). Our findings indicated that arbuscular mycorrhizal colonization could prime quicker and stronger defense responses of tomato plants to mechanical damage.


Asunto(s)
Micorrizas/fisiología , Solanum lycopersicum/microbiología , Simbiosis , Glomeromycota/fisiología , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda