Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Med Sci ; 17(7): 953-964, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308549

RESUMEN

MicroRNA-19 (miR-19) is identified as the key oncogenic component of the miR-17-92 cluster. When we explored the functions of the dysregulated miR-19 in lung cancer, microarray-based data unexpectedly demonstrated that some immune and inflammatory response genes (i.e., IL32, IFI6 and IFIT1) were generally down-regulated by miR-19 overexpression in A549 cells, which prompted us to fully investigate whether the miR-19 family (i.e., miR-19a and miR-19b-1) was implicated in regulating the expression of immune and inflammatory response genes in cancer cells. In the present study, we observed that miR-19a or miR-19b-1 overexpression by miRNA mimics in the A549, HCC827 and CNE2 cells significantly downregulated the expression of interferon (IFN)-regulated genes (i.e., IRF7, IFI6, IFIT1, IFITM1, IFI27 and IFI44L). Furthermore, the ectopic miR-19a or miR-19b-1 expression in the A549, HCC827, CNE2 and HONE1 cells led to a general downward trend in the expression profile of major histocompatibility complex (MHC) class I genes (such as HLA-B, HLA-E, HLA-F or HLA-G); conversely, miR-19a or miR-19b-1 inhibition by the miRNA inhibitor upregulated the aforementioned MHC Class I gene expression, suggesting that miR-19a or miR-19b-1 negatively modulates MHC Class I gene expression. The miR-19a or miR-19b-1 mimics reduced the expression of interleukin (IL)-related genes (i.e., IL1B, IL11RA and IL6) in the A549, HCC827, CNE2 or HONE1 cells. The ectopic expression of miR-19a or miR-19b-1 downregulated IL32 expression in the A549 and HCC827 cells and upregulated IL32 expression in CNE2 and HONE1 cells. In addition, enforced miR-19a or miR-19b-1 expression suppressed IL-6 production by lung cancer and nasopharyngeal carcinoma (NPC) cells. Taken together, these findings demonstrate, for the first time, that miR-19 can modulate the expression of IFN-induced genes and MHC class I genes in human cancer cells, suggesting a novel role of miR-19 in linking inflammation and cancer, which remains to be fully characterized.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , MicroARNs/genética , Células A549 , Línea Celular Tumoral , Humanos , Interferones/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética
2.
Lab Invest ; 99(10): 1484-1500, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31201367

RESUMEN

A previous study revealed that therapeutic miR-26a delivery suppresses tumorigenesis in a murine liver cancer model, whereas we found that forced miR-26a expression increased hepatocellular carcinoma (HCC) cell migration and invasion, which prompted us to characterize the causes and mechanisms underlying enhanced invasion due to ectopic miR-26a expression. Gain-of-function and loss-of-function experiments demonstrated that miR-26a promoted migration and invasion of BEL-7402 and HepG2 cells in vitro and positively modulated matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and MMP-10 expression. In addition, exogenous miR-26a expression significantly enhanced the metastatic ability of HepG2 cells in vivo. miR-26a negatively regulated in vitro proliferation of HCC cells, and miR-26a overexpression suppressed HepG2 cell tumor growth in nude mice. Further studies revealed that miR-26a inhibited cell growth by repressing the methyltransferase EZH2 and promoted cell migration and invasion by inhibiting the phosphatase PTEN. Furthermore, PTEN expression negatively correlated with miR-26a expression in HCC specimens from patients with and without metastasis. Thus, our findings suggest for the first time that miR-26a promotes invasion/metastasis by inhibiting PTEN and inhibits cell proliferation by repressing EZH2 in HCC. More importantly, our data also suggest caution if miR-26a is used as a target for cancer therapy in the future.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Movimiento Celular , Femenino , Células Hep G2 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia
3.
Chaos ; 28(6): 063103, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960384

RESUMEN

We study the dynamics in a clustered network of coupled oscillators by considering positive and negative coupling schemes. Second order oscillators can be interpreted as a model of consumers and generators working in a power network. Numerical results indicate that coupling strategies play an important role in the synchronizability of the clustered power network. It is found that the synchronizability can be enhanced as the positive intragroup connections increase. Meanwhile, when the intragroup interactions are positive and the probability p that two nodes belonging to different clusters are connected is increased, the synchronization has better performance. Besides, when the intragroup connections are negative, it is observed that the power network has poor synchronizability as the probability p increases. Our simulation results can help us understand the collective behavior of the power network with positive and negative couplings.

4.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4163-4168, 2018 Oct.
Artículo en Zh | MEDLINE | ID: mdl-30486545

RESUMEN

To summary and analyze the prescription rules of Professor Chen Baogui, a famous traditional Chinese medicine (TCM) doctor, for treating epigastric fullness. Professor Chen Baogui's prescriptions for treating epigastric fullness were collected and the treatment data were input into traditional Chinese medicine inheritance support system (TCMISS) to analyze the rules of the prescriptions by using data mining methods. Based on the screened 214 cases, the treatment experience of Professor Chen Baogui for treating epigastric fullness was summarized and analyzed. It was found that Professor Chen gave priority to recuperation of Qi activity. The results of four properties and five tastes showed Professor Chen's medication compatibility rules: one was simultaneous use of cold and warm drugs, and the other was simultaneous use of pungent drugs for dispersion and bitter drugs for purgation. In drug use, the basic prescriptions had the efficacy of promoting Qi circulation and regulating viscera function, additionally with the drugs with functions of eliminating digestion and inducing stagnation, activating blood circulation to dissipate blood stasis, replenishing Qi and nourishing Yin, tranquilizing mind, strengthening muscles and bones according to the TCM syndrome type. The clinical experience of Professor Chen for treating epigastric fullness was objectively summarized with the help of TCMISS, which was significant for analyzing and inheriting academic thinking and medication experience from famous TCM doctors.


Asunto(s)
Minería de Datos , Prescripciones de Medicamentos/normas , Medicamentos Herbarios Chinos/uso terapéutico , Estómago/efectos de los fármacos , Digestión/efectos de los fármacos , Humanos , Medicina Tradicional China
5.
Lab Invest ; 95(9): 1056-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26098000

RESUMEN

The miR-19 family (miR-19a and miR-19b-1) are key oncogenic components of the miR-17-92 cluster. Overexpression of miR-19 is strongly associated with cancer invasion and metastasis, and poor prognosis of cancer patients. However, the underlying mechanisms remain largely unknown. In the present study, we found that enforced expression of miR-19 including miR-19a and miR-19b-1 triggered epithelial-mesenchymal transition (EMT) of lung cancer cells A549 and HCC827 as shown by mesenchymal-like morphological conversion, downregulation of epithelial proteins (e.g., E-cadherin, ZO-1 (zona occludens 1), and α-catenin), upregulation of mesenchymal proteins (e.g., vimentin, fibronectin 1, N-cadherin, and snail1), formation of stress fibers, and reduced cell adhesion. In addition, enhanced migration and invasion were observed in the cancer cells A549 and HCC827 undergoing EMT. In contrast, silencing of endogenous miR-19 reversed EMT and reduced the migration and invasion abilities of A549 and HCC827 cells. DNA microarray results revealed significant changes of the expression of genes related to EMT, migration, and metastasis of miR-19-expressing A549 cells. Moreover, siRNA-mediated knockdown of PTEN, a target of miR-19, also resulted in EMT, migration, and invasion of A549 and HCC827 cells, suggesting that PTEN is involved in miR-19-induced EMT, migration and invasion of lung cancer cells. Furthermore, lung cancer cells undergoing EMT induced by miR-19 demonstrated reduced proliferation in vitro and in vivo, and enhanced resistance to apoptosis caused by TNF-α. Taken together, these findings suggest that miR-19 triggers EMT, which has an important role in the invasion and migration of lung cancer cells, accompanied by the reduced proliferation of cells.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pulmonares/fisiopatología , MicroARNs/metabolismo , Animales , Antígenos CD/metabolismo , Western Blotting , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Luciferasas , Ratones , Ratones Endogámicos BALB C , MicroARNs/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Factores de Transcripción de la Familia Snail , Sales de Tetrazolio , Tiazoles , Factores de Transcripción/metabolismo , Ensayo de Tumor de Célula Madre , Vimentina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , alfa Catenina/metabolismo
6.
World J Gastrointest Oncol ; 16(3): 833-843, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577470

RESUMEN

BACKGROUND: Traditional lymph node stage (N stage) has limitations in advanced gastric remnant cancer (GRC) patients; therefore, establishing a new predictive stage is necessary. AIM: To explore the predictive value of positive lymph node ratio (LNR) according to clinicopathological characteristics and prognosis of locally advanced GRC. METHODS: Seventy-four patients who underwent radical gastrectomy and lymphadenectomy for locally advanced GRC were retrospectively reviewed. The relationship between LNR and clinicopathological characteristics was analyzed. The survival analysis was performed using Kaplan-Meier survival curves and Cox regression model. RESULTS: Number of metastatic LNs, tumor diameter, depth of tumor invasion, Borrmann type, serum tumor biomarkers, and tumor-node-metastasis (TNM) stage were correlated with LNR stage and N stage. Univariate analysis revealed that the factors affecting survival included tumor diameter, anemia, serum tumor biomarkers, vascular or neural invasion, combined resection, LNR stage, N stage, and TNM stage (all P < 0.05). The median survival time for those with LNR0, LNR1, LNR2 and LNR3 stage were 61, 31, 23 and 17 mo, respectively, and the differences were significant (P = 0.000). Anemia, tumor biomarkers and LNR stage were independent prognostic factors for survival in multivariable analysis (all P < 0.05). CONCLUSION: The new LNR stage is uniquely based on number of metastatic LNs, with significant prognostic value for locally advanced GRC, and could better differentiate overall survival, compared with N stage.

7.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419081

RESUMEN

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Asunto(s)
Diterpenos de Tipo Kaurano , Hipertermia Inducida , MicroARNs , Neoplasias Nasofaríngeas , Animales , Humanos , Neoplasias Nasofaríngeas/patología , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patología , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
8.
Biochem Biophys Res Commun ; 431(3): 610-6, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23291181

RESUMEN

The functions of miR-9 in some cancers are recently implicated in regulating proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, apoptosis, and tumor angiogenesis, etc. miR-9 is commonly down-regulated in nasopharyngeal carcinoma (NPC), but the exact roles of miR-9 dysregulation in the pathogenesis of NPC remains unclear. Therefore, we firstly used miR-9-expressing CNE2 cells to determine the effects of miR-9 overexpression on global gene expression profile by microarray analysis. Microarray-based gene expression data unexpectedly demonstrated a significant number of up- or down-regulated immune- and inflammation-related genes, including many well-known interferon (IFN)-induced genes (e.g., IFI44L, PSMB8, IRF5, PSMB10, IFI27, PSB9_HUMAN, IFIT2, TRAIL, IFIT1, PSB8_HUMAN, IRF1, B2M and GBP1), major histocompatibility complex (MHC) class I molecules (e.g., HLA-B, HLA-C, HLA-F and HLA-H) and interleukin (IL)-related genes (e.g., IL20RB, GALT, IL7, IL1B, IL11, IL1F8, IL1A, IL6 and IL7R), which was confirmed by qRT-PCR. Moreover, the overexpression of miR-9 with the miRNA mimics significantly up- or down-regulated the expression of above-mentioned IFN-inducible genes, MHC class I molecules and IL-related genes; on the contrary, miR-9 inhibition by anti-miR-9 inhibitor in CNE2 and 5-8F cells correspondingly decreased or increased the aforementioned immune- and inflammation-related genes. Taken together, these findings demonstrate, for the first time, that miR-9 can modulate the expression of IFN-induced genes and MHC class I molecules in human cancer cells, suggesting a novel role of miR-9 in linking inflammation and cancer, which remains to be fully characterized.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , Interferones/metabolismo , MicroARNs/fisiología , Neoplasias Nasofaríngeas/genética , Carcinoma , Humanos , Inflamación/genética , Inflamación/inmunología , MicroARNs/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
Cancer Res ; 83(22): 3710-3725, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602831

RESUMEN

Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy; however, their application is limited by the occurrence of immune-related adverse events. The gut microbiota plays important roles in the response to and toxicity of immunotherapy and Faecalibacterium prausnitzii (F. prausnitzii) has been shown to possess immunomodulatory potential. Here, we found that patients receiving ICIs who developed colitis had a lower abundance of F. prausnitzii. In vivo, immunocompetent mice administered with dextran sodium sulfate and immunodeficient NSG mice with human peripheral blood mononuclear cell transfer were treated with ICIs to study ICI-induced colitis. Dual CTLA4 and PD-1 blockade exacerbated autoimmune colitis, activated an inflammatory response, and promoted myeloid cell infiltration, with higher percentages of macrophages, dendritic cells, monocytes, and neutrophils. F. prausnitzii administration mitigated the exacerbated colitis induced by ICIs. Concomitantly, F. prausnitzii enhanced the antitumor immunity elicited by ICIs in tumor-bearing mice while abrogating colitis. In addition, administration of F. prausnitzii increased gut microbial alpha diversity and modulated the microbial composition, increasing a subset of gut probiotics and decreasing potential gut pathogens. F. prausnitzii abundance was reduced in mice that developed ICI-associated colitis. Together, this study shows that F. prausnitzii administration ameliorates ICI-induced colitis, reshapes the gut microbial composition, and enhances the antitumor activity of immunotherapy. SIGNIFICANCE: F. prausnitzii alleviates colitis while enhancing the tumor-suppressive effects of immune checkpoint blockade, indicating that supplementation with F. prausnitzii could be a treatment strategy to mitigate immunotherapy toxicity in patients with cancer.


Asunto(s)
Colitis , Neoplasias , Humanos , Ratones , Animales , Faecalibacterium prausnitzii , Receptor de Muerte Celular Programada 1 , Leucocitos Mononucleares , Antígeno CTLA-4 , Colitis/inducido químicamente
10.
Aging (Albany NY) ; 15(10): 4391-4410, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37219449

RESUMEN

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.


Asunto(s)
Neoplasias Nasofaríngeas , Animales , Ratones , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patología , Ratones Desnudos , Línea Celular Tumoral , Nasofaringe/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda