Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Plant Biol ; 21(1): 306, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193042

RESUMEN

BACKGROUND: Outbreaks of insect pests in paddy fields cause heavy losses in global rice yield annually, a threat projected to be aggravated by ongoing climate warming. Although significant progress has been made in the screening and cloning of insect resistance genes in rice germplasm and their introgression into modern cultivars, improved rice resistance is only effective against either chewing or phloem-feeding insects. RESULTS: In this study, the results from standard and modified seedbox screening, settlement preference and honeydew excretion tests consistently showed that Qingliu, a previously known leaffolder-resistant rice variety, is also moderately resistant to brown planthopper (BPH). High-throughput RNA sequencing showed a higher number of differentially expressed genes (DEGs) at the infestation site, with 2720 DEGs in leaves vs 181 DEGs in sheaths for leaffolder herbivory and 450 DEGs in sheaths vs 212 DEGs in leaves for BPH infestation. The leaf-specific transcriptome revealed that Qingliu responds to leaffolder feeding by activating jasmonic acid biosynthesis genes and genes regulating the shikimate and phenylpropanoid pathways that are essential for the biosynthesis of salicylic acid, melatonin, flavonoids and lignin defensive compounds. The sheath-specific transcriptome revealed that Qingliu responds to BPH infestation by inducing salicylic acid-responsive genes and those controlling cellular signaling cascades. Taken together these genes could play a role in triggering defense mechanisms such as cell wall modifications and cuticular wax formation. CONCLUSIONS: This study highlighted the key defensive responses of a rarely observed rice variety Qingliu that has resistance to attacks by two different feeding guilds of herbivores. The leaffolders are leaf-feeder while the BPHs are phloem feeders, consequently Qingliu is considered to have dual resistance. Although the defense responses of Qingliu to both insect pest types appear largely dissimilar, the phenylpropanoid pathway (or more specifically phenylalanine ammonia-lyase genes) could be a convergent upstream pathway. However, this possibility requires further studies. This information is valuable for breeding programs aiming to generate broad spectrum insect resistance in rice cultivars.


Asunto(s)
Herbivoria/fisiología , Oryza/genética , Oryza/parasitología , Floema/parasitología , Hojas de la Planta/parasitología , Transcriptoma/genética , Animales , Pared Celular/metabolismo , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Hemípteros/fisiología , Metabolismo de los Lípidos , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/metabolismo , Ácido Shikímico/metabolismo , Transcripción Genética
2.
Plant Cell Environ ; 44(10): 3358-3375, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34278584

RESUMEN

Zn deficiency is the most common micronutrient deficit in rice but Zn is also a widespread industrial pollutant. Zn deficiency responses in rice are well documented, but comparative responses to Zn deficiency and excess have not been reported. Therefore, we compared the physiological, transcriptional and biochemical properties of rice subjected to Zn starvation or excess at early and later treatment stages. Both forms of Zn stress inhibited root and shoot growth. Gene ontology analysis of differentially expressed genes highlighted the overrepresentation of Zn transport and antioxidative defense for both Zn stresses, whereas diterpene biosynthesis was solely induced by excess Zn. Divalent cations (Fe, Cu, Ca, Mn and Mg) accumulated in Zn-deficient shoots but Mg and Mn were depleted in the Zn excess shoots, mirroring the gene expression of non-specific Zn transporters and chelators. Ascorbate peroxidase activity was induced after 14 days of Zn starvation, scavenging H2 O2 more effectively to prevent leaf chlorosis via the Fe-dependent Fenton reaction. Conversely, excess Zn triggered the expression of genes encoding Mg/Mn-binding proteins (OsCPS2/4 and OsKSL4/7) required for antimicrobial diterpenoid biosynthesis. Our study reveals the potential role of divalent cations in the shoot, driving the unique responses of rice to each form of Zn stress.


Asunto(s)
Cationes Bivalentes/metabolismo , Nutrientes/metabolismo , Oryza/fisiología , Estrés Fisiológico , Zinc/metabolismo , Nutrientes/deficiencia , Zinc/deficiencia
3.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577129

RESUMEN

This study developed a nutritionally valuable product with bioactive activity that improves the quality of bread. Djulis (Chenopodium formosanum), a native plant of Taiwan, was fermented using 23 different lactic acid bacteria strains. Lactobacillus casei BCRC10697 was identified as the ideal strain for fermentation, as it lowered the pH value of samples to 4.6 and demonstrated proteolysis ability 1.88 times higher than controls after 24 h of fermentation. Response surface methodology was adopted to optimize the djulis fermentation conditions for trolox equivalent antioxidant capacity (TEAC). The optimal conditions were a temperature of 33.5 °C, fructose content of 7.7%, and dough yield of 332.8, which yielded a TEAC at 6.82 mmol/kg. A 63% increase in TEAC and 20% increase in DPPH were observed when compared with unfermented djulis. Subsequently, the fermented djulis was used in different proportions as a substitute for wheat flour to make bread. The total phenolic and flavonoid compounds were 4.23 mg GAE/g and 3.46 mg QE/g, marking respective increases of 18% and 40% when the djulis was added. Texture analysis revealed that adding djulis increased the hardness and chewiness of sourdough breads. It also extended their shelf life by approximately 2 days. Thus, adding djulis to sourdough can enhance the functionality of breads and may provide a potential basis for developing djulis-based functional food.


Asunto(s)
Pan , Fermentación , Harina , Antioxidantes , Lactobacillales
4.
J Nanosci Nanotechnol ; 18(2): 967-975, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448521

RESUMEN

TiO2 nanocubes were synthesized via hydrolysis condensation of titanium tetra-isopropoxide (TTIP) in aqueous media, followed by hydrothermal treatment with ammonium salts. Various ammonium salts with different alkyl chain such as ammonium hydroxide (NH4OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH) and tetrabutylammonium hydroxide (TBAH) were investigated. The crystalline phase, shape, and morphology of TiO2 nanocubes were studied by XRD, TEM, and SEM analysis. These TiO2 nanocubes were pure anatase phase and tended to assemble with well-ordered and close-packed domains. Both alkyl chain length of ammonium salts and hydrothermal duration affected the TiO2 nanocube formation process. The ammonium salts with longer alkyl chain formed TiO2 nanocubes in shorter hydrothermal time and offered the smallest particle size. The above TiO2 nanocubes were applied as photoanode materials in N719 anchored dye-sensitized solar cells and one of the cells exhibited the maximum power conversion efficiency of 7.85%.

5.
Inorg Chem ; 56(21): 12987-12995, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29019659

RESUMEN

We report the synthesis, characterization, and photovoltaic properties of four ruthenium complexes (CI101, CBTR, CB111, and CB108) having various N-heterocyclic carbene ancillary ligands, pyridine-imidazole, -benzimidazole, -dithienobenzimidazole, and -phenanthroimidazole, respectively. These complexes were designed to investigate the effect of extended conjugation ordained from ring fusion on the power conversion efficiencies of the solar cells. The device sensitized by CB108, the pyridine-phenanthroimidazole conjugated complex, showed an improved efficiency (9.89%) compared to those of pyridine-benzimidazole conjugated system (CBTR, 9.72%) and the parent unfused ring system (CI101, 6.24%). Surprisingly, the sulfur-incorporated pyridine-dithienobenzimidazole system (CB111, 9.24%) exhibited a little lower efficiency than that of N719 (9.41%). The enhanced photovoltaic performance of CB108 was mainly attributed to the increase in electron lifetime and diffusion length confirmed by the electrochemical impedance spectroscopy.

6.
J Nanosci Nanotechnol ; 15(4): 2850-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26353504

RESUMEN

A magnetic adsorbent, amine-functionalized silica magnetite (NH2-Al/SiO2/Fe3O4), has been synthesized to behave as an cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonated. NH2-Al/SiO2/Fe3O4 was used to adsorb phosphate ions in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 3.0. The adsorption equilibrium data were all fitted the Langmuir isotherm equation reasonably well, and the maximum adsorption capacities of phosphate ions were more than 40 mg g(-1) and increased with elevating temperature. The enthalpy (ΔH0) and entropy (ΔS0) values of NH2-Al/SiO2/Fe3O4 with the adsorption reaction of phosphate ions were 11.98 KJ mol(-1) and 0.095 KJ (T mol)(-1), respectively. A pseudo-second-order model also could best describe the adsorption kinetics, and the derived activation energy for phosphate ions was 20.2 kJ mol(-1). The optimum condition to desorb phosphate ions from NH2-Al/SiO2/Fe3O4 is provided by a solution with 0.05 M NaOH.


Asunto(s)
Óxido Ferrosoférrico/química , Fosfatos/química , Poliaminas/química , Adsorción , Fosfatos/aislamiento & purificación , Dióxido de Silicio/química , Termodinámica , Agua
7.
Environ Sci Technol ; 48(6): 3344-53, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559272

RESUMEN

Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.


Asunto(s)
Brassicaceae/genética , Brassicaceae/metabolismo , Metales Pesados/metabolismo , Transcriptoma/genética , Biodegradación Ambiental , Ecotipo , Perfilación de la Expresión Génica , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
8.
Cell Mol Life Sci ; 69(19): 3187-206, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903262

RESUMEN

When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.


Asunto(s)
Cadmio/toxicidad , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Plantas/efectos de los fármacos , Estrés Fisiológico , Zinc/toxicidad , Disponibilidad Biológica , Cadmio/farmacocinética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Zinc/farmacocinética
9.
Proc Natl Acad Sci U S A ; 107(22): 10296-301, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20479230

RESUMEN

Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper (bZIP) transcription factor gene family, bZIP19 and bZIP23, that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt- and Irt-related protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Zinc/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Secuencia Conservada , ADN de Plantas/genética , Genes de Plantas , Prueba de Complementación Genética , Humanos , Mutagénesis Insercional , Mutación , Fenotipo , Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Técnicas del Sistema de Dos Híbridos
10.
Environ Technol ; 34(21-24): 3145-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24617073

RESUMEN

This study is to optimize the multi-quality performance of magnetic catalyst/ozone process by combining a technique for order performance by similarity to ideal solution (TOPSIS) with the Taguchi method, which simultaneously has the best decomposition rate constant of benzoic acid and removal rate constant of total organic carbon (TOC). The optimal experimental parameters were pH of 7, initial concentration of 75 ppm and catalyst loading of 0.05 g/L. More than 93% of the magnetic catalyst was easily separated and redispersed for reuse by the magnetic force due to the paramagnetic behaviours of the prepared SiO2/Fe3O4. It is believed that through the joint efforts improvement, design and manufacturing, new separation and recycling technologies will be available and more easily recyclable magnetic catalysts will be developed in the future.


Asunto(s)
Ácido Benzoico/química , Ácido Benzoico/efectos de la radiación , Óxido Ferrosoférrico/química , Ozono/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Ácido Benzoico/aislamiento & purificación , Catálisis , Óxido Ferrosoférrico/efectos de la radiación , Campos Magnéticos , Ozono/efectos de la radiación , Reciclaje , Agua/química , Contaminantes Químicos del Agua/efectos de la radiación
11.
Plants (Basel) ; 11(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35567105

RESUMEN

Metals that accumulate in plants may confer protection against herbivorous insects, a phenomenon known as elemental defense. However, this strategy has not been widely explored in important crops such as rice (Oryza sativa L.), where it could help to reduce the use of chemical pesticides. Here, we investigated the potential of copper (Cu) and iron (Fe) micronutrient supplements for the protection of rice against a major insect pest, the rice leaffolder (Cnaphalocrocis medinalis). We found that intermediate levels of Cu (20 µM CuSO4) and high concentrations of Fe (742 µM Fe) did not inhibit the growth of C. medinalis larvae but did inhibit rice root growth and reduce grain yield at the reproductive stage. In contrast, high levels of Cu (80 µM CuSO4) inhibited C. medinalis larval growth and pupal development but also adversely affected rice growth at the vegetative stage. Interestingly, treatment with 10 µM CuSO4 had no adverse effects on rice growth or yield components at the reproductive stage. These data suggest that pest management based on the application of Cu may be possible, which would be achieved by a higher effective pesticide dose to prevent or minimize its phytotoxicity effects in plants.

12.
Front Pediatr ; 10: 999596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452356

RESUMEN

Objective: To report a case of glycogen storage disease (GSD) type Ia misdiagnosed as multiple acyl-coenzyme a dehydrogenase deficiency (MADD) by mass spectrometry. Methods: A 7 months old boy was admitted to our hospital for elevated transaminase levels lasting more than 1 month. His blood biochemistry showed hypoglycemia, metabolic acidosis, hyperlipidemia, elevated lactate and uric acid, elevated alanine amino transferase (ALT), aspartate amino transaminase (AST) and gamma-glutamyl transferase (GGT). Mass spectrometry analysis of blood and urine showed elevated blood acylcarnitines and dicarboxylic aciduria, indicating multiple acyl-coenzyme A dehydrogenase deficiency. Sanger sequencing of all exons of glucose-6-phosphatase (G6Pase) and electronic transfer flavoprotein dehydrogenase (ETFDH) was performed for the patient and his parents. Results: Coding and flanking sequences of the G6Pase gene detected two heterozygous single base substitutions in the boy. One variant was in exon 1 (c.209G > A), Which was also detected in the father. Another was in exon 5 (c.648G > T), which was detected in the mother. Coding and flanking sequences of the ETFDH gene revealed no pathogenic/likely pathogenic variants in the boy. Conclusion: GSD Ia can manifest elevated blood acyl carnitines and dicarboxylic aciduria which were the typical clinical manifestations of MADD. So the patient with clinical manifestations similar to MADD is in need of differential diagnosis for GSD Ia. Genetic testing is helpful to confirming the diagnosis of inherited metabolic diseases.

13.
J Hazard Mater ; 429: 128265, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35077975

RESUMEN

Indium is widely used in the technology industry and is an emerging form of environmental pollution. The presence of indium in soil and groundwater inhibits shoot and root growth in crops, thus reducing yields. However, the underlying mechanisms are unknown, making it difficult to design effective countermeasures. We explored the spatiotemporal effects of excess indium on the morphological, physiological and biochemical properties of rice (Oryza sativa L.). Indium accumulated mainly in the roots, severely restricting their growth and causing the acute perturbation of phosphorus, magnesium and iron homeostasis. Other effects included leaf necrosis and anatomical changes in the roots (thinned sclerenchyma and enlarged epidermal and exodermal layers). Whole-transcriptome sequencing revealed that rice immediately responded to indium stress by activating genes involved in heavy metal tolerance and phosphate starvation responses, including the expression of genes encoding phosphate-regulated transcription factors and transporters in the roots. Direct indium toxicity rather than phosphate deficiency was identified as the major factor affecting the growth of rice plants, resulting in the profound phenotypic changes we observed. The application of exogenous phosphate alleviated indium toxicity by reducing indium uptake. Our results suggest that indium immobilization could be used to prevent indium toxicity in the field.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Indio/toxicidad , Oryza/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo
14.
Sci Rep ; 10(1): 6597, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32759951

RESUMEN

Cnaphalocrocis medinalis is a major insect pest of rice in Asia. A few defensive enzymes were reported to show higher activities in a resistant rice line (Qingliu) than in a susceptible rice line (TN1) upon leaffolder infestation. However, the overall molecular regulation of the rice defense response against leaffolder herbivory is unknown. Here, differential proteomic analysis by SWATH-MS was performed to identify differentially expressed proteins between the two rice varieties, Qingliu and TN1, at four time points of leaffolder herbivory, 0, 6, 24, and 72 h. Gene Ontology (GO) enrichment of the differentially expressed proteins indicated overrepresentation of (1) photosynthesis, (2) amino acid and derivative metabolic process, and (3) secondary metabolic process. Phenylalanine ammonia lyase and chalcone synthase, which catalyze flavonoid biosynthesis, and lipoxygenase, which catalyzes jasmonic acid biosynthesis, exhibited higher expression in Qingliu than in TN1 even before insect herbivory. Momentary activation of the light reaction and Calvin cycle was detected in Qingliu at 6 h and 24 h of insect herbivory, respectively. At 72 h of insect herbivory, amino acid biosynthesis and glutathione-mediated antioxidation were activated in Qingliu. A defense response involving jasmonic acid signaling, carbon remobilization, and the production of flavonoids and glutathione could underlie the resistance of Qingliu to leaffolder.


Asunto(s)
Resistencia a la Enfermedad/genética , Lepidópteros/patogenicidad , Oryza/genética , Proteoma/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Oryza/parasitología , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
15.
New Phytol ; 182(2): 392-404, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19210716

RESUMEN

ZIP transporters (ZRT, IRT-like proteins) are involved in the transport of iron (Fe), zinc (Zn) and other divalent metal cations. The expression of IRT3, a ZIP transporter, is higher in the Zn/cadmium (Cd) hyperaccumulator Arabidopsis halleri than is that of its ortholog in Arabidopsis thaliana, which implies a positive association of its expression with Zn accumulation in A. halleri. IRT3 genes from both A. halleri and A. thaliana functionally complemented the Zn uptake mutant Spzrt1 in Schizosaccharomyces pombe; and Zn uptake double mutant zrt1zrt2, Fe-uptake mutant fet3fet4 and conferred Zn and Fe uptake activity in Saccharomyces cerevisiae. By contrast, the manganese (Mn) uptake mutant smf1 phenotypes were not rescued. Insufficient Cd uptake for toxicity was found. Expression of IRT3-green fluorescent protein (GFP) fusion proteins in Arabidopsis root protoplasts indicated localization of both IRT3 proteins in the plasma membrane. Overexpressing AtIRT3 in A. thaliana led to increased accumulation of Zn in the shoot and Fe in the root of transgenic lines. Therefore, IRT3 functions as a Zn and Fe-uptake transporter in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Expresión Génica , Genes de Plantas , Hierro/metabolismo , Proteínas de Transporte de Membrana/genética , Zinc/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Cadmio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/genética , Manganeso/metabolismo
16.
Dalton Trans ; 47(25): 8356-8363, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29897066

RESUMEN

New heteroleptic Ru(ii) complexes consisting of pyridylimine as an ancillary ligand were synthesized and characterized for applications in dye sensitized solar cells. Complexes with cis and trans configurations around the central ruthenium metal were obtained using simple synthetic protocols by varying the substituents on the pyridylimine ligands. The geometries of these complexes were confirmed by single crystal X-ray analysis. The effect of the difference in the configurations of these complexes on their device performances was studied and the sensitizer with a trans arrangement around the metal showed a higher overall conversion efficiency (η) of 7.27% than that of the cis configured complex (η = 2.04%).

17.
PLoS One ; 12(5): e0178393, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562640

RESUMEN

In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Metalotioneína/metabolismo , Metales Pesados/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/genética , Clonación Molecular , ADN Complementario/genética , Proteínas Fluorescentes Verdes/genética , Metalotioneína/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética
18.
PLoS One ; 11(3): e0149750, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26930473

RESUMEN

Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.


Asunto(s)
Arabidopsis/genética , Brassicaceae/genética , Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Plantas/genética , Zinc/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Secuencia de Bases , Brassicaceae/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Metales/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
19.
J Hazard Mater ; 91(1-3): 239-56, 2002 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-11900916

RESUMEN

Experiments on high temperature oxidation of multi-chlorinated hydrocarbons, tetrachloroethylene (C2Cl4), with hydrocarbon fuels, CH4, were performed in a 15 mm i.d. tubular flow reactor. Temperatures ranged from 700 to 850 degrees C, with the average residence time in the range from 0.3 to 1.5s. Three equivalence ratios, phi=0.87 (fuel-lean (FL)), phi=1 (stoichiometry (S)), and phi=1.3 (fuel-rich (FR)), were studied. The global Arrhenius equations for the decomposition of C(2)Cl(4) for each reactant set ratio are: k(lean)=5.77 x 10(15) exp(-30447/RT), k(stoi)=5.15 x 10(15) exp(-30421/RT), and k(rich)=6.32 x 10(14) exp(-28879/RT). The important reactions for destruction of parent C2Cl4 include: C2Cl4 --> C2Cl3 + Cl, C2Cl4 + H--> C2Cl3 + HCl and C2Cl4 + H --> C2HCl3 + Cl. The resulting reactant loss, and intermediate and final product profiles were determined. C2HCl3, C2Cl2, CO, CO2 and HCl are the major products for the reaction of C2Cl4/CH4/O2 mixtures for these three reaction systems. Minor intermediates include C2H3Cl, C2HCl, COCl2, CH3CHCl2, C2H4, C2H6, CCl2CHCH3 , trans-CHClCHCl, cis-CHClCHCl, trans-ClHC=CClCH(3), C6H6, and Cl2. The experimental data showed that as the oxygen concentration increased, the temperature needed to detect the resulting products decreased.


Asunto(s)
Contaminantes Ambientales/análisis , Metano/química , Tetracloroetileno/química , Incineración , Oxidación-Reducción , Eliminación de Residuos/métodos , Temperatura
20.
Front Plant Sci ; 5: 261, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24999345

RESUMEN

Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass. In order to provide additional molecular resources for this model metal hyperaccumulator species to study and understand the mechanism of adaptation to heavy metal exposure, we aimed to provide a comprehensive database of transcript sequences for N. caerulescens. In this study, 23,830 transcript sequences (isotigs) with an average length of 1025 bp were determined for roots, shoots and inflorescences of N. caerulescens accession "Ganges" by Roche GS-FLEX 454 pyrosequencing. These isotigs were grouped into 20,378 isogroups, representing potential genes. This is a large expansion of the existing N. caerulescens transcriptome set consisting of 3705 unigenes. When translated and compared to a Brassicaceae proteome set, 22,232 (93.2%) of the N. caerulescens isotigs (corresponding to 19,191 isogroups) had a significant match and could be annotated accordingly. Of the remaining sequences, 98 isotigs resembled non-plant sequences and 1386 had no significant similarity to any sequence in the GenBank database. Among the annotated set there were many isotigs with similarity to metal homeostasis genes or genes for glucosinolate biosynthesis. Only for transcripts similar to Metallothionein3 (MT3), clear evidence for an additional copy was found. This comprehensive set of transcripts is expected to further contribute to the discovery of mechanisms used by N. caerulescens to adapt to heavy metal exposure.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda