Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Dev Cell ; 59(2): 280-291.e5, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38128539

RESUMEN

Hearing loss is a chronic disease affecting millions of people worldwide, yet no restorative treatment options are available. Although non-mammalian species can regenerate their auditory sensory hair cells, mammals cannot. Birds retain facultative stem cells known as supporting cells that engage in proliferative regeneration when surrounding hair cells die. Here, we investigated gene expression changes in chicken supporting cells during auditory hair cell death. This identified a pathway involving the receptor F2RL1, HBEGF, EGFR, and ERK signaling. We propose a cascade starting with the proteolytic activation of F2RL1, followed by matrix-metalloprotease-mediated HBEGF shedding, and culminating in EGFR-mediated ERK signaling. Each component of this cascade is essential for supporting cell S-phase entry in vivo and is integral for hair cell regeneration. Furthermore, STAT3-phosphorylation converges with this signaling toward upregulation of transcription factors ATF3, FOSL2, and CREM. Our findings could provide a basis for designing treatments for hearing and balance disorders.


Asunto(s)
Células Ciliadas Auditivas , Pérdida Auditiva , Humanos , Animales , Transducción de Señal/fisiología , Pollos/metabolismo , Pérdida Auditiva/metabolismo , Receptores ErbB/metabolismo , Mamíferos/metabolismo
2.
Nat Commun ; 15(1): 4833, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844821

RESUMEN

Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.


Asunto(s)
Regeneración , Análisis de la Célula Individual , Transcriptoma , Humanos , Animales , Regeneración/genética , Ratones , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/citología , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patología , Oído Interno/metabolismo , Oído Interno/citología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Células Ciliadas Vestibulares/metabolismo , Femenino , Perfilación de la Expresión Génica
3.
Cell Rep ; 34(12): 108902, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761357

RESUMEN

Sensory hair cells are prone to apoptosis caused by various drugs including aminoglycoside antibiotics. In mammals, this vulnerability results in permanent hearing loss because lost hair cells are not regenerated. Conversely, hair cells regenerate in birds, making the avian inner ear an exquisite model for studying ototoxicity and regeneration. Here, we use single-cell RNA sequencing and trajectory analysis on control and dying hair cells after aminoglycoside treatment. Interestingly, the two major subtypes of avian cochlear hair cells, tall and short hair cells, respond differently. Dying short hair cells show a noticeable transient upregulation of many more genes than tall hair cells. The most prominent gene group identified is associated with potassium ion conductances, suggesting distinct physiological differences. Moreover, the dynamic characterization of >15,000 genes expressed in tall and short avian hair cells during their apoptotic demise comprises a resource for further investigations toward mammalian hair cell protection and hair cell regeneration.


Asunto(s)
Pollos/genética , Células Ciliadas Auditivas/patología , Transcriptoma/genética , Aminoglicósidos/farmacología , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Canales Semicirculares/efectos de los fármacos , Canales Semicirculares/metabolismo , Sisomicina/administración & dosificación , Sisomicina/farmacología , Factores de Tiempo , Transcriptoma/efectos de los fármacos
4.
Cell Rep ; 36(2): 109358, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260939

RESUMEN

The utricle is a vestibular sensory organ that requires mechanosensitive hair cells to detect linear acceleration. In neonatal mice, new hair cells are derived from non-sensory supporting cells, yet cell type diversity and mechanisms of cell addition remain poorly characterized. Here, we perform computational analyses on single-cell transcriptomes to categorize cell types and resolve 14 individual sensory and non-sensory subtypes. Along the periphery of the sensory epithelium, we uncover distinct groups of transitional epithelial cells, marked by Islr, Cnmd, and Enpep expression. By reconstructing de novo trajectories and gene dynamics, we show that as the utricle expands, Islr+ transitional epithelial cells exhibit a dynamic and proliferative phase to generate new supporting cells, followed by coordinated differentiation into hair cells. Taken together, our study reveals a sequential and coordinated process by which non-sensory epithelial cells contribute to growth of the postnatal mouse sensory epithelium.


Asunto(s)
Oído Interno/citología , Sensación/genética , Análisis de la Célula Individual , Transcriptoma/genética , Animales , Animales Recién Nacidos , Diferenciación Celular , Linaje de la Célula , Células Epiteliales/citología , Células Ciliadas Auditivas/citología , Ratones , Reproducibilidad de los Resultados , Sáculo y Utrículo/citología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda