Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Strength Cond Res ; 38(1): 55-65, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085621

RESUMEN

ABSTRACT: Cintineo, HP, Chandler, AJ, Mastrofini, GF, Lints, BS, McFadden, BA, and Arent, SM. Effects of minimal-equipment resistance training and blood flow restriction on military-relevant performance outcomes. J Strength Cond Res 38(1): 55-65, 2024-This study compared minimal-equipment resistance training (RT) with and without blood flow restriction (BFR) to traditional-equipment RT on performance and body composition changes over 6 weeks. Reserve officers' training corps cadets and midshipmen (N = 54, 40.7% female) were randomized into traditional-equipment RT (TRAD), minimal-equipment RT (MIN), or minimal-equipment RT with BFR (MIN + BFR). Performance and body composition were assessed pretraining and post-training, and measures of intensity and workload were evaluated throughout. Performance assessments included the army combat fitness test (ACFT), countermovement vertical jump, 3RM bench press, and V̇O2max; body composition measures included body fat percentage, fat-free mass, and muscle and tendon thickness. All groups trained 4 days per week after a full-body routine. Data were analyzed by mixed-effects models (α = 0.05). Group-by-time interactions for 3RM deadlift and 3RM bench press (p < 0.004) showed larger improvements for TRAD compared with MIN and MIN + BFR. Time main effects for all other performance variables, body fat percentage, fat-free mass, and muscle thickness (p ≤ 0.035) indicated improvements in all groups. A group-by-time interaction for blood lactate (p < 0.001) and group main effects for heart rate (p < 0.001) and workload variables (p < 0.008) indicated higher intensity and workload for MIN and MIN + BFR compared with TRAD. A sex-by-time interaction for 3RM deadlift (p = 0.008) and sex-by-group-by-time interaction for 3RM bench press (p = 0.018) were also found. Minimal-equipment RT improved performance and body composition, although strength improvements were greater with traditional equipment. Minimal-equipment RT and minimal-equipment RT with BFR exhibited higher exertion levels than TRAD, although adaptations were similar. Overall, individuals can improve performance and body composition using portable, field-expedient RT equipment.


Asunto(s)
Personal Militar , Entrenamiento de Fuerza , Femenino , Humanos , Masculino , Hemodinámica , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología
2.
J Int Soc Sports Nutr ; 21(1): 2370430, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38904150

RESUMEN

BACKGROUND: Cannabidiol (CBD) is a non-psychoactive phyto-cannabinoid derived from the Cannabis sativa plant. CBD exhibits various interactions at receptor sites, prompting the research of its potential anti-inflammatory, immunomodulatory, psychological, and pain-relieving effects. This study aimed to investigate the physiological, biochemical, and psychometric effects of a brand-specific, hemp-derived CBD product in healthy adults over a 12-week observation period. METHODS: 54 healthy males and females (age = 25 ± 7y; BMI = 24.82 ± 3.25 kg/m2) recruited from a large Southeastern University completed the study. Participants arrived at the laboratory after > 8 h of fasting, and > 48 h without alcohol consumption and vigorous exercise. Following baseline measurements (height, weight, blood pressure, electrocardiogram (ECG), and blood work), participants were stratified by sex and randomized to either CBD or placebo groups. Products were administered double-blinded, with both given in liquid form containing medium-chain triglyceride oil, while the CBD product specifically contained 50 mg/mL of CBD. Participants were instructed to consume 1 mL of their product twice daily and were given enough product to last until their next laboratory visit. Data were collected at baseline and on days 30 ± 3, 60 ± 3, and 90 ± 3. Blood was drawn for analysis of immune and inflammatory biomarkers. Chronic pain among participants was calculated using urine samples according to the foundational pain index (FPI). Self-reported psychometric questionnaires were utilized (Cohen's Perceived Stress Scale, Pittsburgh Sleep Quality Index, Profile of Mood States,10-item Likert scale for perceived pain) to assess stress, sleep quality, mood state, and body discomfort. To determine overall wellbeing, participants completed a daily survey indicating if they missed work or school due to illness. Change from baseline was calculated for each measure, and mixed effects models were used to determine differences between groups over time while adjusting for baseline values (α = 0.05). Data are presented as mean ± standard deviation. RESULTS: There were no Group-by-Time interactions or Group or Time main effects for immune or inflammatory biomarkers (p > 0.05). Analyses revealed no Group-by-Time interactions or main effects observed for perceived stress, sleep quality, overall mood disturbance, and all the profile of mood state subscales (p > 0.05), except "vigor-activity." A Time main effect was found for the sub-score for "vigor-activity" (p = 0.007; Pre CBD = 19.5 ± 5.2, Post CBD = 17.3 ± 5.3; Pre PL = 19.0 ± 5.7, Post PL = 17.9 ± 7.1), which decreased from Visit 3 to Visit 4 (p = 0.025) and from Visit 3 to Visit 5 (p = 0.014). There was a Group main effect for FPI (p = 0.028; Pre CBD = 11.9 ± 14.4, Post CBD = 8.8 ± 10.9; Pre PL = 9.0 ± 14.2, Post PL = 12.9 ± 11.5), indicating that the placebo group had greater increases in pain over the intervention compared to the CBD group. No significant differences were found between groups in the incidence and prevalence of "colds or flus" (p > 0.05). DISCUSSION: CBD was safe and well tolerated in healthy adults. These findings show pain was lower in the CBD group, suggesting a potentially positive effect for consumption of CBD. "Vigor-activity" decreased across the intervention, which may be a confounding effect of the academic semester. While the dosage chosen was safe, more research may be warranted using higher doses as these may be needed to observe further therapeutic effects in healthy populations.


Asunto(s)
Cannabidiol , Humanos , Cannabidiol/administración & dosificación , Cannabidiol/farmacología , Masculino , Método Doble Ciego , Femenino , Adulto , Adulto Joven , Humulus/química , Psicometría , Cannabis/química , Biomarcadores/sangre
3.
J Int Soc Sports Nutr ; 20(1): 2224751, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37331983

RESUMEN

INTRODUCTION: High-intensity exercise (HIE) can damage the musculotendon complex and impact the immune response, resulting in post-exercise inflammation. Sufficient rest and recovery will improve muscular resilience against future damaging bouts; however, HIE with minimal durations of rest is common in athletic competitions that facilitate persistent inflammation and immune dysregulation. Fucoidans are fucose-rich sulfated polysaccharides with demonstrated anti-inflammatory and pro-immune responses. Fucoidans may improve inflammation and immune responses, which may prove beneficial for individuals who regularly engage in repeated HIE. The research purpose was to investigate the safety and efficacy of fucoidans on inflammatory and immune markers following HIE. METHODS: Eight male and eight female participants were randomized into a double-blind, placebo-controlled, counterbalanced, crossover design study and supplemented with 1 g/day fucoidan from Undaria pinnatifida (UPF) or placebo (PL) for 2 weeks. Supplementation periods concluded with HIE testing, followed by 1 week of washout. HIE involved one > 30 s Wingate anaerobic test (WAnT) and eight 10 s WAnT intervals. Blood was drawn pre-exercise, immediately post-exercise, 30 min, and 60 min post-exercise to assess immune and inflammatory markers. Blood markers, peak power (PP), and mean power (MP) were analyzed using a 2 (condition) × 4 (time) design. Significance was set at α = .05. RESULTS: A time-by-condition interaction was observed for interleukin-6 (p = .01) and interleukin-10 (p = .008). Post hoc analysis revealed greater interleukin-6 and interleukin-10 concentrations at 30 min post HIE with UPF supplementation (p = .002 and p = .005, respectively). No effects of condition were observed for all blood markers or performance outcomes with UPF supplementation (p > .05). Main effects of time were observed for white blood cells, red blood cells, red cell distribution width, mean platelet volume, neutrophils, lymphocytes, monocytes, eosinophils, basophils, natural killer cells, B and T-lymphocytes, CD4 and CD8 cells (p < .05). DISCUSSION: No adverse events were reported throughout the study period, indicating a positive safety profile of UPF. While notable changes in biomarkers occurred up to 1 hr post HIE, few differences were observed between supplementation conditions. There did appear to be a modest effect of UPF on inflammatory cytokines potentially warranting further investigation. However, fucoidan supplementation did not influence exercise performance.


Asunto(s)
Interleucina-10 , Interleucina-6 , Humanos , Masculino , Femenino , Polisacáridos , Inflamación , Suplementos Dietéticos , Método Doble Ciego
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda