Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(16): 8783-8787, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32241892

RESUMEN

A skyrmion state in a noncentrosymmetric helimagnet displays topologically protected spin textures with profound technological implications for high-density information storage, ultrafast spintronics, and effective microwave devices. Usually, its equilibrium state in a bulk helimagnet occurs only over a very restricted magnetic field-temperature phase space and often in the low-temperature region near the magnetic transition temperature Tc We have expanded and enhanced the skyrmion phase region from the small range of 55 to 58.5 K to 5 to 300 K in single-crystalline Cu2OSeO3 by pressures up to 42.1 GPa through a series of phase transitions from the cubic P213, through orthorhombic P212121 and monoclinic P21, and finally to the triclinic P1 phase, using our newly developed ultrasensitive high-pressure magnetization technique. The results are in agreement with our Ginzburg-Landau free energy analyses, showing that pressures tend to stabilize the skyrmion states and at higher temperatures. The observations also indicate that the skyrmion state can be achieved at higher temperatures in various crystal symmetries, suggesting the insensitivity of skyrmions to the underlying crystal lattices and thus the possible more ubiquitous presence of skyrmions in helimagnets.

2.
Faraday Discuss ; 239(0): 202-218, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36305553

RESUMEN

Predictive synthesis-structure-property relationships are at the core of materials design for novel applications. In this regard, correlations between the compositional stoichiometry variations and functional properties are essential for enhancing the performance of devices based on these materials. In this work, we investigate the effect of stoichiometry variations and defects on the structural and optoelectronic properties of monocrystalline zinc phosphide (Zn3P2), a promising compound for photovoltaic applications. We use experimental methods, such as electron and X-ray diffraction and Raman spectroscopy, along with density functional theory calculations, to showcase the favorable creation of P interstitial defects over Zn vacancies in P-rich and Zn-poor compositional regions. Photoluminescence and absorption measurements show that these defects create additional energy levels at about 180 meV above the valence band. Furthermore, they lead to the narrowing of the bandgap, due to the creation of band tails in the region of around 10-20 meV above the valence and below the conduction band. The ability of zinc phosphide to form off-stoichiometric compounds provides a new promising opportunity for tunable functionality that benefits applications. In that regard, this study is crucial for the further development of zinc phosphide and its application in optoelectronic and photovoltaic devices, and should pave the way for defect engineering in this kind of material.

3.
Nanotechnology ; 32(8): 085704, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33171447

RESUMEN

Earth-abundant and low-cost semiconductors, such as zinc phosphide (Zn3P2), are promising candidates for the next generation photovoltaic applications. However, synthesis on commercially available substrates, which favors the formation of defects, and controllable doping are challenging drawbacks that restrain device performance. Better assessment of relevant properties such as structure, crystal quality and defects will allow faster advancement of Zn3P2, and in this sense, Raman spectroscopy can play an invaluable role. In order to provide a complete Raman spectrum reference of Zn3P2, this work presents a comprehensive analysis of vibrational properties of tetragonally-structured Zn3P2 (space group P42/nmc) nanowires, from both experimental and theoretical perspectives. Low-temperature, high-resolution Raman polarization measurements have been performed on single-crystalline nanowires. Different polarization configurations have allowed selective enhancement of A1g, B1g and Eg Raman modes, while B2g modes were identified from complementary unpolarized Raman measurements. Simultaneous deconvolution of all Raman spectra with Lorentzian curves has allowed identification of 33 peaks which have been assigned to 34 (8 A1g + 9 B1g + 3 B2g + 14 Eg) out of the 39 theoretically predicted eigenmodes. The experimental results are in good agreement with the vibrational frequencies that have been computed by first-principles calculations based on density functional theory. Three separate regions were observed in the phonon dispersion diagram: (i) low-frequency region (<210 cm-1) which is dominated by Zn-related vibrations, (ii) intermediate region (210-225 cm-1) which represents a true phonon gap with no observed vibrations, and (iii) high-frequency region (>225 cm-1) which is attributed to primarily P-related vibrations. The analysis of vibrational patterns has shown that non-degenerate modes involve mostly atomic motion along the long crystal axis (c-axis), while degenerate modes correspond primarily to in-plane vibrations, perpendicular to the long c-axis. These results provide a detailed reference for identification of the tetragonal Zn3P2 phase and can be used for building Raman based methodologies for effective defect screening of bulk materials and films, which might contain structural inhomogeneities.

4.
Phys Chem Chem Phys ; 24(1): 63-72, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851345

RESUMEN

Zinc phosphide (Zn3P2) is a II-V compound semiconductor with promising photovoltaic and thermoelectric applications. Its complex structure is susceptible to facile defect formation, which plays a key role in further optimization of the material. Raman spectroscopy can be effectively used for defect characterization. However, the Raman tensor of Zn3P2, which determines the intensity of Raman peaks and anisotropy of inelastic light scattering, is still unknown. In this paper, we use angle-resolved polarization Raman measurements on stoichiometric monocrystalline Zn3P2 thin films to obtain the Raman tensor of Zn3P2. This has allowed determination of the Raman tensor elements characteristic for the A1g, B1g and B2g vibrational modes. These results have been compared with the theoretically obtained Raman tensor elements and simulated Raman spectra from the lattice-dynamics calculations using first-principles force constants. Excellent agreement is found between the experimental and simulated Raman spectra of Zn3P2 for various polarization configurations, providing a platform for future characterization of the defects in this material.

5.
J Am Chem Soc ; 140(22): 6785-6788, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29782155

RESUMEN

A metastable germanium allotrope, Ge(oP32), was synthesized as polycrystalline powders and single crystals from the mild-oxidation/delithiation of Li7Ge12 in ionic liquids. Its crystal structure, from single crystal X-ray diffraction ( Pbcm, a = 8.1527(4) Å, b = 11.7572(5) Å, c = 7.7617(4) Å), features a complex covalent network of 4-bonded Ge, resulting from a well-ordered topotactic oxidative condensation of [Ge12]7- layers. It is a diamagnetic semiconductor ( Eg = 0.33 eV), and transforms exothermically and irreversibly to α-Ge at 363 °C. This demonstrates the potential of ionic liquids as reactive media in the mild oxidation of Zintl phases to new highly crystallized modifications of elements and simple compounds.

6.
Inorg Chem ; 56(6): 3467-3474, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28263068

RESUMEN

This work presents a comprehensive analysis of the structural and vibrational properties of the kesterite Cu2ZnSnS4 (CZTS, I4̅ space group) as well as its polymorphs with the space groups P4̅2c and P4̅2m, from both experimental and theoretical point of views. Multiwavelength Raman scattering measurements performed on bulk CZTS polycrystalline samples were utilized to experimentally determine properties of the most intense Raman modes expected in these crystalline structures according to group theory analysis. The experimental results compare well with the vibrational frequencies that have been computed by first-principles calculations based on density functional theory. Vibrational patterns of the most intense fully symmetric modes corresponding to the P4̅2c structure were compared with the corresponding modes in the I4̅ CZTS structure. The results point to the need to look beyond the standard phases (kesterite and stannite) of CZTS while exploring and explaining the electronic and vibrational properties of these materials, as well as the possibility of using Raman spectroscopy as an effective technique for detecting the presence of different crystallographic modifications within the same material.

7.
Inorg Chem ; 55(20): 10203-10207, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27668307

RESUMEN

The structures of two trigonal-rhombohedral CaSi2 polymorphs (space group R3̅m) were studied by X-ray diffraction and polarized Raman scattering spectroscopy. Raman-active even-parity vibrational modes of A1g and Eg are unambiguously identified and assigned to the specific lattice eigenmodes. Experimental data are found to be in very good agreement with those predicted by density functional theory lattice dynamics calculations. The transformation of 6R structural modification of CaSi2 into its 3R polymorph, by high-temperature annealing in vacuum is also reported.

8.
Inorg Chem ; 55(5): 1956-61, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26863096

RESUMEN

We combined synchrotron-based infrared spectroscopy, Raman scattering, and diamond anvil cell techniques with complementary lattice dynamics calculations to reveal local lattice distortions in Mn[N(CN)2]2 under compression. Strikingly, we found a series of transitions involving octahedral counter-rotations, changes in the local Mn environment, and deformations of the superexchange pathway. In addition to reinforcing magnetic property trends, these pressure-induced local lattice distortions may provide an avenue for the development of new functionalities.

9.
J Am Chem Soc ; 137(2): 636-9, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25581015

RESUMEN

A new niobium oxyfluoride, Nb2O2F3, synthesized through the reaction of Nb, SnO, and SnF2 in Sn flux, within welded Nb containers, crystallizes in a monoclinic structure (space group: I2/a; a = 5.7048(1)Å, b = 5.1610(1)Å, c = 12.2285(2)Å, ß = 95.751(1)°). It features [Nb2X10] units (X = O, F), with short (2.5739(1) Å) Nb-Nb bonds, that are linked through shared O/F vertices to form a 3D structure configurationally isotypic to ζ-Nb2O5. Nb2O2F3 undergoes a structural transition at ∼90 K to a triclinic structure (space group: P1̅; a = 5.1791(5)Å, b = 5.7043(6)Å, c = 6.8911(7)Å, α = 108.669(3)°, ß = 109.922(2)°, γ = 90.332(3)°). The transition is described as a disproportionation or charge ordering of [Nb2](7+) dimers: (2[Nb2](7+) → [Nb2](6+) + [Nb2](8+)), resulting in doubly (2.5000(9) Å) and singly bonded (2.6560(9) Å) Nb2 dimers. The structural transition is accompanied by an unusual field-independent "spin-gap-like" magnetic transition.

10.
Inorg Chem ; 54(3): 898-904, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25409395

RESUMEN

BaMn(9)[VO(4)](6)(OH)(2) was synthesized by hydrothermal methods. We evaluated the crystal structure based on the two possible space groups P2(1)3 and Pa3̅ [a = 12.8417(2) Å] using single-crystal and powder X-ray diffraction techniques. The structure contains three-dimensionally linked Mn(9) units of a chiral "paddle-wheel" type. Experimental IR and Raman spectra were analyzed in terms of fundamental vanadate and hydroxide vibrational modes. The magnetic properties were investigated, and the specific heat in applied fields was studied. The dominant magnetic interactions (Mn(2+), S = 5/2) are of antiferromagnetic origin, as indicated by a Curie-Weiss fit above 175 K with Θ ≈ -200 K. Canting of the spins on the geometrically frustrated triangle segment of the structural feature is considered to account for the ferrimagnetic type of long-range order at T(C) ≈ 18 K. We propose a model for the spin structure in the ordered regime. Dielectric constants were measured and indicate a magnetodielectric effect at T(C), which is assigned to spin-lattice coupling.

11.
Inorg Chem ; 53(10): 4994-5001, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24787625

RESUMEN

The magnetic honeycomb lattice series of compounds, AAg2(M'1/3M2/3)[VO4]2 with A = Ba(2+), Sr(2+), M' = Mg(2+), Zn(2+), and M = Mn(2+), Co(2+), and Ni(2+), have been synthesized and their physical properties are reported. This series of compounds contains the M' and M cations in a 1:2 ratio on a single crystallographic site. In an ordered arrangement, this could generate a magnetic honeycomb-type lattice. Presented X-ray diffraction data, spectroscopic measurements of lattice dynamics, along with ab initio calculations, magnetic, and specific heat data for these compounds clearly point toward the formation of magnetic honeycomb-type lattices.

12.
J Phys Chem C Nanomater Interfaces ; 127(22): 10649-10654, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37313121

RESUMEN

Copper diphosphide (CuP2) is an emerging binary semiconductor with promising properties for energy conversion and storage applications. While functionality and possible applications of CuP2 have been studied, there is a curious gap in the investigation of its vibrational properties. In this work, we provide a reference Raman spectrum of CuP2, with a complete analysis of all Raman active modes from both experimental and theoretical perspectives. Raman measurements have been performed on polycrystalline CuP2 thin films with close to stoichiometric composition. Detailed deconvolution of the Raman spectrum with Lorentzian curves has allowed identification of all theoretically predicted Raman active modes (9Ag and 9Bg), including their positions and symmetry assignment. Furthermore, calculations of the phonon density of states (PDOS), as well as the phonon dispersions, provide a microscopic understanding of the experimentally observed phonon lines, in addition to the assignment to the specific lattice eigenmodes. We further provide the theoretically predicted positions of the infrared (IR) active modes, along with the simulated IR spectrum from density functional theory (DFT). Overall good agreement is found between the experimental and DFT-calculated Raman spectra of CuP2, providing a reference platform for future investigations on this material.

13.
Inorg Chem ; 51(10): 5822-30, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22554150

RESUMEN

Single crystal polarized Raman and infrared spectra of the series Na(5)[MO(2)][X] with M = Co(I), Ni(I), and Cu(I) and X = S(2-) and CO(3)(2-), are reported. All phonon modes are assigned to the lattice eigenmodes based on the group theory analysis and first principles lattice dynamics calculations. The energies of the fundamental symmetric and asymmetric vibrations of the [MO(2)](3-) complex are discussed on the basis of their electronic structure and variation in M-O interatomic distances. Electronic Raman scattering and luminescence are observed for the magnetic members of the series (Co(I), d(8), and Ni(I), d(9)). Ligand field theory is employed to account for the electronic effects which originate from states split by spin-orbit coupling.

14.
J Phys Condens Matter ; 35(10)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575889

RESUMEN

Ternary (I-III-VI) and quaternary (I-II-IV-VI) metal-chalcogenides like CuInS2or Cu2ZnSn(S,Se)4are among the materials currently most intensively investigated for various applications in the area of alternative energy conversion and light-emitting devices. They promise more sustainable and affordable solutions to numerous applications, compared to more developed and well understood II-VI and III-V semiconductors. Potentially superior properties are based on an unprecedented tolerance of these compounds to non-stoichiometric compositions and polymorphism. However, if not properly controlled, these merits lead to undesirable coexistence of different compounds in a single polycrystalline lattice and huge concentrations of point defects, becoming an immense hurdle on the way toward real-life applications. Raman spectroscopy of phonons has become one of the most powerful tools of structural diagnostics and probing physical properties of bulk and microcrystalline I-III-VI and I-II-IV-VI compounds. The recent explosive growth of the number of reports on fabrication and characterization of nanostructures of these compounds must be pointed out as well as the steady use of Raman spectroscopy for their characterization. Interpretation of the vibrational spectra of these compound nanocrystals (NCs) and conclusions about their structure can be complicated compared to bulk counterparts because of size and surface effects as well as emergence of new structural polymorphs that are not realizable in the bulk. This review attempts to summarize the present knowledge in the field of I-III-VI and I-II-IV-VI NCs regarding their phonon spectra and capabilities of Raman and IR spectroscopies in the structural characterizations of these promising families of compounds.

15.
Materials (Basel) ; 14(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199129

RESUMEN

The synthesis of (Cu,Ag)-Zn-Sn-S (CAZTS) and Ag-Zn-Sn-S (AZTS) nanocrystals (NCs) by means of "green" chemistry in aqueous solution and their detailed characterization by Raman spectroscopy and several complementary techniques are reported. Through a systematic variation of the nominal composition and quantification of the constituent elements in CAZTS and AZTS NCs by X-ray photoemission spectroscopy (XPS), we identified the vibrational Raman and IR fingerprints of both the main AZTS phase and secondary phases of Ag-Zn-S and Ag-Sn-S compounds. The formation of the secondary phases of Ag-S and Ag-Zn-S cannot be avoided entirely for this type of synthesis. The Ag-Zn-S phase, having its bandgap in near infrared range, is the reason for the non-monotonous dependence of the absorption edge of CAZTS NCs on the Ag content, with a trend to redshift even below the bandgaps of bulk AZTS and CZTS. The work function, electron affinity, and ionization potential of the AZTS NCs are derived using photoelectron spectroscopy measurements.

16.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34835686

RESUMEN

Cu-Zn-Sn-Te (CZTTe) is an inexpensive quaternary semiconductor that has not been investigated so far, unlike its intensively studied CZTS and CZTSe counterparts, although it may potentially have desirable properties for solar energy conversion, thermoelectric, and other applications. Here, we report on the synthesis of CZTTe nanocrystals (NCs) via an original low-cost, low-temperature colloidal synthesis in water, using a small-molecule stabilizer, thioglycolic acid. The absorption edge at about 0.8-0.9 eV agrees well with the value expected for Cu2ZnSnTe4, thus suggesting CZTTe to be an affordable alternative for IR photodetectors and solar cells. As the main method of structural characterization multi-wavelength resonant Raman spectroscopy was used complemented by TEM, XRD, XPS as well as UV-vis and IR absorption spectroscopy. The experimental study is supported by first principles density functional calculations of the electronic structure and phonon spectra. Even though the composition of NCs exhibits a noticeable deviation from the Cu2ZnSnTe4 stoichiometry, a common feature of multinary NCs synthesized in water, the Raman spectra reveal very small widths of the main phonon peak and also multi-phonon scattering processes up to the fourth order. These factors imply a very good crystallinity of the NCs, which is further confirmed by high-resolution TEM.

17.
J Phys Condens Matter ; 32(44): 445401, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32679574

RESUMEN

Lattice dynamic properties of the tetragonal modification of ZnP2 and CdP2 crystals (space group P41212, no 92) are calculated within the density functional theory. Theoretical results are shown to compare favorably with available Raman scattering and infrared reflection/transmission experimental data, which allows assignment of Raman-and infrared-active modes to the specific lattice eigenmodes. It is confirmed that several distinct features of vibrational spectra of these compounds steam from the presence of four phosphorous spiraling chains within crystallographic unit cell.

18.
J Phys Condens Matter ; 31(13): 135401, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30658348

RESUMEN

Optical and vibrational properties of a novel allotrope of elemental germanium Ge(oP32), which crystallizes in the structure corresponding to the orthorhombic space group Pbcm, are studied experimentally by means of absorption and polarized Raman scattering measurements and theoretically using the first principles density functional theory. Material is found to be a direct band gap semiconductor with E g = 0.33 eV. Out of theoretically predicted 48 Raman-active modes, 27 are observed in the spectra and assigned to the specific lattice eigenmodes of the crystal based on their symmetry and a comparison with the results of first principles lattice dynamics calculations. Remarkably, the highest frequency vibration is observed at 316 cm-1, that is higher than the cubic crystalline [Formula: see text]-Ge mode at 300 cm-1. Exceptional sharpness of observed phonon lines (between 0.8 and 2.5 cm-1 at T = 10 K) implies excellent crystallinity of Ge(oP32) crystals.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda