Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 844
Filtrar
Más filtros

Publication year range
1.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36796361

RESUMEN

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Asunto(s)
Astenozoospermia , Tupaia , Animales , Masculino , Macaca fascicularis , Primates , Semen , Motilidad Espermática , Tupaiidae
2.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802043

RESUMEN

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Estudio de Asociación del Genoma Completo , Medicina de Precisión , Secuenciación Completa del Genoma/métodos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38624244

RESUMEN

Significant knowledge gaps exist regarding the responses of cells, tissues, and organs to organismal death. Examining the survival mechanisms influenced by metabolism and environment, this research has the potential to transform regenerative medicine, redefine legal death, and provide insights into life's physiological limits, paralleling inquiries in embryogenesis.

4.
Hum Mol Genet ; 32(4): 649-658, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36130209

RESUMEN

BACKGROUND: The relations of alcohol consumption and gene expression remain to be elucidated. MATERIALS AND METHODS: We examined cross-sectional associations between alcohol consumption and whole blood derived gene expression levels and between alcohol-associated genes and obesity, hypertension, and diabetes in 5531 Framingham Heart Study (FHS) participants. RESULTS: We identified 25 alcohol-associated genes. We further showed cross-sectional associations of 16 alcohol-associated genes with obesity, nine genes with hypertension, and eight genes with diabetes at P < 0.002. For example, we observed decreased expression of PROK2 (ß = -0.0018; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) and PAX5 (ß = -0.0014; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) per 1 g/day increase in alcohol consumption. Consistent with our previous observation on the inverse association of alcohol consumption with obesity and positive association of alcohol consumption with hypertension, we found that PROK2 was positively associated with obesity (OR = 1.42; 95%CI: 1.17, 1.72; P = 4.5e - 4) and PAX5 was negatively associated with hypertension (OR = 0.73; 95%CI: 0.59, 0.89; P = 1.6e - 3). We also observed that alcohol consumption was positively associated with expression of ABCA13 (ß = 0.0012; 95%CI: 0.0007, 0.0017; P = 1.3e - 6) and ABCA13 was positively associated with diabetes (OR = 2.57; 95%CI: 1.73, 3.84; P = 3.5e - 06); this finding, however, was inconsistent with our observation of an inverse association between alcohol consumption and diabetes. CONCLUSIONS: We showed strong cross-sectional associations between alcohol consumption and expression levels of 25 genes in FHS participants. Nonetheless, complex relationships exist between alcohol-associated genes and CVD risk factors.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hipertensión , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/complicaciones , Transcriptoma , Estudios Transversales , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Hipertensión/genética , Factores de Riesgo , Obesidad/epidemiología , Obesidad/genética , Obesidad/complicaciones , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Estudios Longitudinales , Biomarcadores
5.
Bioinformatics ; 40(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902940

RESUMEN

MOTIVATION: Complex diseases are often caused and characterized by misregulation of multiple biological pathways. Differential network analysis aims to detect significant rewiring of biological network structures under different conditions and has become an important tool for understanding the molecular etiology of disease progression and therapeutic response. With few exceptions, most existing differential network analysis tools perform differential tests on separately learned network structures that are computationally expensive and prone to collapse when grouped samples are limited or less consistent. RESULTS: We previously developed an accurate differential network analysis method-differential dependency networks (DDN), that enables joint learning of common and rewired network structures under different conditions. We now introduce the DDN3.0 tool that improves this framework with three new and highly efficient algorithms, namely, unbiased model estimation with a weighted error measure applicable to imbalance sample groups, multiple acceleration strategies to improve learning efficiency, and data-driven determination of proper hyperparameters. The comparative experimental results obtained from both realistic simulations and case studies show that DDN3.0 can help biologists more accurately identify, in a study-specific and often unknown conserved regulatory circuitry, a network of significantly rewired molecular players potentially responsible for phenotypic transitions. AVAILABILITY AND IMPLEMENTATION: The Python package of DDN3.0 is freely available at https://github.com/cbil-vt/DDN3. A user's guide and a vignette are provided at https://ddn-30.readthedocs.io/.


Asunto(s)
Algoritmos , Programas Informáticos , Humanos , Redes Reguladoras de Genes , Biología Computacional/métodos
6.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38407991

RESUMEN

MOTIVATION: Complex tissues are dynamic ecosystems consisting of molecularly distinct yet interacting cell types. Computational deconvolution aims to dissect bulk tissue data into cell type compositions and cell-specific expressions. With few exceptions, most existing deconvolution tools exploit supervised approaches requiring various types of references that may be unreliable or even unavailable for specific tissue microenvironments. RESULTS: We previously developed a fully unsupervised deconvolution method-Convex Analysis of Mixtures (CAM), that enables estimation of cell type composition and expression from bulk tissues. We now introduce CAM3.0 tool that improves this framework with three new and highly efficient algorithms, namely, radius-fixed clustering to identify reliable markers, linear programming to detect an initial scatter simplex, and a smart floating search for the optimum latent variable model. The comparative experimental results obtained from both realistic simulations and case studies show that the CAM3.0 tool can help biologists more accurately identify known or novel cell markers, determine cell proportions, and estimate cell-specific expressions, complementing the existing tools particularly when study- or datatype-specific references are unreliable or unavailable. AVAILABILITY AND IMPLEMENTATION: The open-source R Scripts of CAM3.0 is freely available at https://github.com/ChiungTingWu/CAM3/(https://github.com/Bioconductor/Contributions/issues/3205). A user's guide and a vignette are provided.


Asunto(s)
Algoritmos , Ecosistema , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos
7.
Mol Psychiatry ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724566

RESUMEN

Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.

8.
Mol Psychiatry ; 29(2): 505-517, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38167865

RESUMEN

Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.


Asunto(s)
Mitocondrias , Enfermedad de Parkinson , Polimorfismo de Nucleótido Simple , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Animales , Ratones , Humanos , Polimorfismo de Nucleótido Simple/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , Factores Protectores , Ratones Endogámicos C57BL , Neuronas/metabolismo , Modelos Animales de Enfermedad , Masculino , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Péptidos/genética , Péptidos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Péptidos y Proteínas de Señalización Intracelular
9.
Cell Mol Life Sci ; 81(1): 85, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345762

RESUMEN

The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.


Asunto(s)
Calcio , Ferroptosis , Humanos , Oxalato de Calcio/química , PPAR alfa , Ácidos Grasos Insaturados , Ácidos Palmíticos
10.
Am J Hum Genet ; 108(8): 1466-1477, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237282

RESUMEN

Multiple morphological abnormalities of the sperm flagella (MMAF)-induced asthenoteratozoospermia is a common cause of male infertility. Previous studies have identified several MMAF-associated genes, highlighting the condition's genetic heterogeneity. To further define the genetic causes underlying MMAF, we performed whole-exome sequencing in a cohort of 643 Chinese MMAF-affected men. Bi-allelic DNAH10 variants were identified in five individuals with MMAF from four unrelated families. These variants were either rare or absent in public population genome databases and were predicted to be deleterious by multiple bioinformatics tools. Morphological and ultrastructural analyses of the spermatozoa obtained from men harboring bi-allelic DNAH10 variants revealed striking flagellar defects with the absence of inner dynein arms (IDAs). DNAH10 encodes an axonemal IDA heavy chain component that is predominantly expressed in the testes. Immunostaining analysis indicated that DNAH10 localized to the entire sperm flagellum of control spermatozoa. In contrast, spermatozoa from the men harboring bi-allelic DNAH10 variants exhibited an absence or markedly reduced staining intensity of DNAH10 and other IDA components, including DNAH2 and DNAH6. Furthermore, the phenotypes were recapitulated in mouse models lacking Dnah10 or expressing a disease-associated variant, confirming the involvement of DNAH10 in human MMAF. Altogether, our findings in humans and mice demonstrate that DNAH10 is essential for sperm flagellar assembly and that deleterious bi-allelic DNAH10 variants can cause male infertility with MMAF. These findings will provide guidance for genetic counseling and insights into the diagnosis of MMAF-associated asthenoteratozoospermia.


Asunto(s)
Astenozoospermia/complicaciones , Modelos Animales de Enfermedad , Dineínas/genética , Infertilidad Masculina/patología , Mutación , Fenotipo , Espermatozoides/patología , Alelos , Animales , Homocigoto , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Espermatozoides/metabolismo , Secuenciación del Exoma
11.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33472045

RESUMEN

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Asunto(s)
Astenozoospermia/genética , Infertilidad Masculina/genética , Animales , Astenozoospermia/patología , Astenozoospermia/fisiopatología , Estudios de Cohortes , Femenino , Eliminación de Gen , Genes Ligados a X , Hemicigoto , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Linaje , Fenotipo , Inyecciones de Esperma Intracitoplasmáticas , Motilidad Espermática , Cola del Espermatozoide/ultraestructura , Espermatozoides/patología , Espermatozoides/fisiología , Espermatozoides/ultraestructura , Secuenciación del Exoma
12.
Oncologist ; 29(4): e455-e466, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37995303

RESUMEN

BACKGROUND: CDK4/6 inhibitors (CDK4/6i) have shown great efficacy in prolonging progression-free survival and is the current standard of care for hormone positive (HR(+)) metastatic breast cancer (mBC). Despite well tolerability and ease of use, the most common side effect of CDK4/6i is myelosuppression, with neutropenia the most prevalent adverse effect. Studies show that the prevalence and severity of neutropenia are more marked in Asian patients, although details remain obscure. METHODS: In this study, we retrospectively analyzed 105 Taiwanese patients who received palbociclib for HR(+) HER2(-) mBC at the Taipei Veterans General Hospital. To investigate a possible genetic association for high prevalence of neutropenia, we queried the Taiwan Biobank with publicly available germline databases (ALFA, gnomAD, ExAC, 1000 Genomes project, HapMap), for the allele frequencies of 4 neutropenia-related SNPs (ABCB1_rs1045642, ABCB1_rs1128503, ERCC1_rs3212986, ERCC1_rs11615) and compared between different ethnicities. In addition, one of the patients was a long-term patient with peritoneal dialysis. We quantified the levels of palbociclib in her serum and peritoneal fluid by liquid chromatography-mass spectrometry (LC-MS). RESULTS: Interestingly, in our cohort, early neutropenia nadir (occurred within 56 days of start) was associated with worse treatment outcome, while occurrence of grade 3/4 neutropenia was associated with better outcome. We observed an extremely high incidence of neutropenia (96.2% any grade, 70.4% grade 3/4). In the analyzed germline databases, we discovered a higher SNP frequency of the T allele in ABCB1_rs1128503, a lower frequency of T allele in ABCB1_rs1045642, and a higher SNP frequency of G allele in ERCC1_rs11615. We observed that palbociclib levels in peritoneal dialysate ranged from around 20-50 ppb, and serum levels reached 100-110 ppb during drug administration and decreased to <10 ppb during discontinuation. CONCLUSION: Our retrospective analysis of real world palbociclib use reveals an association with grade 3/4 neutropenia with better outcome and early neutropenia nadir with worse outcome. Our findings of Asian specific SNPs support a predisposition toward profound and prevalent neutropenia in Asian patients under CDK4/6i. We also report the first pharmacokinetics analysis on a patient with peritoneal dialysis receiving CDK4/6i. In summary, our study provides novel clinical and genotypic insights into CDK4/6i associated neutropenia.


Asunto(s)
Neoplasias de la Mama , Neutropenia , Piperazinas , Piridinas , Femenino , Humanos , Estudios Retrospectivos , Prevalencia , Receptor ErbB-2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neutropenia/inducido químicamente , Neutropenia/epidemiología , Neutropenia/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quinasa 4 Dependiente de la Ciclina
13.
Mol Genet Genomics ; 299(1): 35, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489045

RESUMEN

Asthenoteratospermia is a significant cause of male infertility. FAM71D (Family with sequence similarity 71, member D), as a novel protein exclusively expressed in the testis, has been found to be associated with sperm motility. However, the association of FAM71D mutation with male infertility has yet to be examined. Here, we conducted whole-exome sequencing and identified a homozygous missense mutation c.440G > A (p. Arg147Gln) of FAM71D in an asthenoteratospermia-affected man from a consanguineous family. The FAM71D variant is extremely rare in human population genome databases and predicted to be deleterious by multiple bioinformatics tools. Semen analysis indicated decreased sperm motility and obvious morphological abnormalities in sperm cells from the FAM71D-deficient man. Immunofluorescence assays revealed that the identified FAM71D mutation had an important influence on the assembly of sperm structure-related proteins. Furthermore, intra-cytoplasmic sperm injection (ICSI) treatment performed on the infertile man with FAM71D variant achieved a satisfactory outcome. Overall, our study identified FAM71D as a novel causative gene for male infertility with asthenoteratospermia, for which ICSI treatment may be suggested to acquire good prognosis. All these findings will provide effective guidance for genetic counselling and assisted reproduction treatments of asthenoteratospermia-affected subjects.


Asunto(s)
Infertilidad Masculina , Semen , Masculino , Humanos , Motilidad Espermática , Espermatozoides , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Testículo/metabolismo , Mutación
14.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771357

RESUMEN

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Trastornos del Neurodesarrollo , Linaje , Proteínas de Transporte Vesicular , Humanos , Trastornos del Neurodesarrollo/genética , Masculino , Femenino , Proteínas de Transporte Vesicular/genética , Estudios de Asociación Genética/métodos , Niño , Preescolar , Exoma/genética , Pakistán , Predisposición Genética a la Enfermedad , Mutación , Moléculas de Adhesión Celular Neuronal/genética
15.
Cytotherapy ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38795116

RESUMEN

Autologous peripheral blood stem cell (PBSC) transplantation is crucial in pediatric cancer treatment, and tandem transplantation is beneficial in certain malignancies. Collecting PBSCs in small children with low body weight is challenging. We retrospectively analyzed data of pediatric cancer patients weighing <15 kg who underwent autologous PBSC harvesting in our hospital. Collections were performed in the pediatric intensive care unit over 2 or 3 consecutive days, to harvest sufficient stem cells (goal ≥2 × 106 CD34+ cells/kg per apheresate). From April 2006 to August 2021, we performed 129 collections after 50 mobilizations in 40 patients, with a median age of 1.9 (range, 0.6-5.6) years and a body weight of 11.0 (range, 6.6-14.7) kg. The median CD34+ cells in each apheresate were 4.2 (range, 0.01-40.13) × 106/kg. 78% and 56% of mobilizations achieved sufficient cell dose for single or tandem transplantation, respectively, without additional aliquoting. The preapheresis hematopoietic progenitor cell (HPC) count was highly correlated with the CD34+ cell yield in the apheresate (r = 0.555, P < 0.001). Granulocyte colony-stimulating factor alone was not effective for mobilization in children ≥2 years of age, even without radiation exposure. By combining the preapheresis HPC count ≥20/µL and the 3 significant host factors, including age <2 years, no radiation exposure and use of chemotherapy, the prediction rate of goal achievement was increased (area under the curve 0.787).

16.
FASEB J ; 37(4): e22840, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36943397

RESUMEN

Erdafitinib is a novel fibroblast growth factor receptor (FGFR) inhibitor that has shown great therapeutic promise for solid tumor patients with FGFR3 alterations, especially in urothelial carcinoma. However, the mechanisms of resistance to FGFR inhibitors remain poorly understood. In this study, we found Erdafitinib could kill cells by inducing incomplete autophagy and increasing intracellular reactive oxygen species levels. We have established an Erdafitinib-resistant cell line, RT-112-RS. whole transcriptome RNA sequencing (RNA-Seq) and Cytospace analysis performed on Erdafitinib-resistant RT-112-RS cells and parental RT-112 cells introduced P4HA2 as a linchpin to Erdafitinib resistance. The gain and loss of function study provided evidence for P4HA2 conferring such resistance in RT-112 cells. Furthermore, P4HA2 could stabilize the HIF-1α protein which then activated downstream target genes to reduce reactive oxygen species levels in bladder cancer. In turn, HIF-1α could directly bind to P4HA2 promoter, indicating a positive loop between P4HA2 and HIF-1α in bladder cancer. These results suggest a substantial role of P4HA2 in mediating acquired resistance to Erdafitinib and provide a potential target for bladder cancer treatment.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Línea Celular Tumoral , Pirazoles/farmacología , Especies Reactivas de Oxígeno , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
17.
Mol Psychiatry ; 28(11): 4842-4852, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696874

RESUMEN

Sex differences are pervasive in schizophrenia (SCZ), but the extent and magnitude of DNA methylation (DNAm) changes underlying these differences remain uncharacterized. In this study, sex-stratified differential DNAm analysis was performed in postmortem brain samples from 117 SCZ and 137 controls, partitioned into discovery and replication datasets. Three differentially methylated positions (DMPs) were identified (adj.p < 0.05) in females and 29 DMPs in males without overlap between them. Over 81% of these sex-stratified DMPs were directionally consistent between sexes but with different effect sizes. Females experienced larger magnitude of DNAm changes and more DMPs (based on data of equal sample size) than males, contributing to a higher dysregulation burden of DNAm in females SCZ. Additionally, despite similar proportions of female-related DMPs (fDMPs, 8%) being under genetic control compared with males (10%), significant enrichment of DMP-related single nucleotide polymorphisms (SNPs) in signals of genome-wide association studies was identified only in fDMPs. One DMP in each sex connected the SNPs and gene expression of CALHM1 in females and CCDC149 in males. PPI subnetworks revealed that both female- and male-related differential DNAm interacted with synapse-related dysregulation. Immune-related pathways were unique for females and neuron-related pathways were associated with males. This study reveals remarkable quantitative differences in DNAm-related sexual dimorphism in SCZ and that females have a higher dysregulation burden of SCZ-associated DNAm than males.


Asunto(s)
Metilación de ADN , Esquizofrenia , Humanos , Masculino , Femenino , Metilación de ADN/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Sexismo , Encéfalo/metabolismo
18.
Mol Psychiatry ; 28(11): 4707-4718, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37217679

RESUMEN

Psychological stress increases the risk of major psychiatric disorders. Psychological stress on mice was reported to induce differential gene expression (DEG) in mice brain regions. Alternative splicing is a fundamental aspect of gene expression and has been associated with psychiatric disorders but has not been investigated in the stressed brain yet. This study investigated changes in gene expression and splicing under psychological stress, the related pathways, and possible relationship with psychiatric disorders. RNA-seq raw data of 164 mouse brain samples from 3 independent datasets with stressors including chronic social defeat stress (CSDS), early life stress (ELS), and two-hit stress of combined CSDS and ELS were collected. There were more changes in splicing than in gene expression in the ventral hippocampus and medial prefrontal cortex, but stress-induced changes of individual genes by differential splicing and differential expression could not be replicated. In contrast, pathway analyses produced robust findings: stress-induced differentially spliced genes (DSGs) were reproducibly enriched in neural transmission and blood-brain barrier systems, and DEGs were reproducibly enriched in stress response-related functions. The hub genes of DSG-related PPI networks were enriched in synaptic functions. The corresponding human homologs of stress-induced DSGs were robustly enriched in AD-related DSGs as well as BD and SCZ in GWAS. These results suggested that stress-induced DSGs from different datasets belong to the same biological system throughout the stress response process, resulting in consistent stress response effects.


Asunto(s)
Empalme Alternativo , Barrera Hematoencefálica , Humanos , Ratones , Animales , Empalme Alternativo/genética , Transmisión Sináptica , Encéfalo/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/metabolismo
19.
Mol Psychiatry ; 28(1): 96-107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36474001

RESUMEN

Microglia are resident immune cells in the central nervous system, playing critical roles in brain development and homeostasis. Increasing evidence has implicated microglia dysfunction in the pathogenesis of various brain disorders ranging from psychiatric disorders to neurodegenerative diseases. Using a human cell-based model to illuminate the functional mechanisms of microglia will promote pathological studies and drug development. The recently developed microglia-containing human brain organoids (MC-HBOs), in-vitro three-dimensional cell cultures that recapitulate key features of the human brain, have provided a new avenue to model brain development and pathology. However, MC-HBOs generated from different methods differ in the origin, proportion, and fidelity of microglia within the organoids, and may have produced inconsistent results. To help researchers to develop a robust and reproducible model that recapitulates in-vivo signatures of human microglia to study brain development and pathology, this review summarized the current methods used to generate MC-HBOs and provided opinions on the use of MC-HBOs for disease modeling and functional studies.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Microglía/fisiología , Encéfalo/patología , Sistema Nervioso Central/fisiología , Organoides/patología
20.
Mol Psychiatry ; 28(2): 710-721, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36424395

RESUMEN

Neuroinflammation has been implicated in multiple brain disorders but the extent and the magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been directly compared. In this study, 1275 IRGs were curated and their expression changes investigated in 2467 postmortem brains of controls and patients with six major brain disorders, including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD). There were 865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had significantly altered expression in at least one of the six disorders. The differentially expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology of brain disorders. However, only a few genes with expression changes were also identified as containing risk variants in genome-wide association studies. The transcriptome alterations at gene and network levels may clarify the immune-related pathophysiology and help to better define neuropsychiatric and neurological disorders.


Asunto(s)
Enfermedad de Alzheimer , Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Humanos , Transcriptoma/genética , Trastorno Depresivo Mayor/metabolismo , Trastorno del Espectro Autista/genética , Estudio de Asociación del Genoma Completo , Encéfalo/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda