RESUMEN
OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.
RESUMEN
PURPOSE: Few studies have focused on the impact of human papillomavirus (HPV) positivity in male partners on female HPV infection and cervical lesions. The purpose of this study was to evaluate the impact of the HPV infection status of husbands on wives' cervical HPV infection and lesions. METHODS: We surveyed 251 monogamous couples who attended the outpatient department of Fujian Maternity and Child Health Hospital from 2013 to 2021. HPV type analysis was performed on exfoliated cells of the females' cervix and males' urethra by the PCR-reverse dot blot method. We analyzed the prevalence and consistency of HPV types in 251 couples. Subsequently, the risk of HPV infection in females with HPV-positive male partners was analyzed. SPSS version 26 (IBM, Chicago, USA) was used for statistical analysis. RESULTS: In 251 couples, the most commonly detected high-risk HPV (HR-HPV) genotypes were 52, 51, 16, and 58 for males and 16, 52, 18, and 58 for females. Wives with HPV-positive husbands had higher infection rates for most HR-HPV genotypes. HR-HPV positivity in husbands was a risk factor for the development of cervical lesions in wives (OR = 2.250, P = 0.014). Both single-type (OR = 2.085, P = 0.040) and multiple-type (OR = 2.751, P = 0.036) infection in husbands will contributed to an increased risk of non-HR-HPV infection and cervical lesions in wives. CONCLUSION: Husbands' HPV positivity increases the burden of non-HR-HPV infection and increases the risk of cervical lesions developing in wives. It is hoped to provide a reference value for cervical cancer prevention in females and HPV vaccination in males.
Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Embarazo , Niño , Humanos , Masculino , Femenino , Heterosexualidad , Infecciones por Papillomavirus/epidemiología , Papillomaviridae/genética , Cuello del Útero , Genotipo , Prevalencia , Neoplasias del Cuello Uterino/epidemiologíaRESUMEN
Azido-tetrazolo tautomerizations between azido N-heteroaromatic compounds and tetrazole-fused energetic materials can produce a new generation of high-energy density compounds. Density functional theory (DFT) computations are performed to explore the relationship between reaction barriers and electron densities of bonding N atoms, i.e., the terminal N1 and heterocyclic N2 atoms, for six reported tautomerizations. The results reveal four linear correlations between reverse reaction barriers (Gr) and the electron densities of N1 and N2 atoms in the product. N1 electron density (ρN1) and N-N bond polarity, as measured by the difference between the electron densities on the two N atoms (ΔρN = ρN1 - ρN2) in products, are inversely proportional to the reverse reaction barriers. They are also proportional to the energy barrier differences between the forward and reverse reactions (ΔG = Gf - Gr). Polar solvents, including DMSO, water, and acetone, can effectively increase the reverse reaction barriers (Gr) by improving the stability of products. This regularity is further confirmed by its application to four additional tautomerizations and can be used to screen out unfavorable azido-tetrazolo tautomerization reactions and increase the success rate of such synthesis.
RESUMEN
Objective: This study aimed to evaluate the role of plasma cytokine detection in endometrial cancer screening and tumor progression assessment in patients with abnormal uterine bleeding. Methods: In this multicenter retrospective cohort study of 287 patients with abnormal uterine bleeding, comprehensive clinical information and laboratory assessments, including cytokines, routine blood tests, and tumor markers, were performed. Associations between the clinical indicators and endometrial carcinogenesis/progression were evaluated. The independent risk factors for endometrial cancer and endometrial cancer with deep myometrial invasion were analyzed using multivariate binary logistic regression. Additionally, a diagnostic model was used to evaluate the predictive efficacy of these identified risk factors. Results: In patients with abnormal uterine bleeding, low IL-4 and high IL-8 levels were independent risk factors for endometrial cancer (p < 0.05). Combining IL-4, IL-8, CA125, and menopausal status improved the accuracy of assessing endometrial cancer risk. The area under curve of the model is 0.816. High IL-6 and IL-8 levels were independent risk factors for deep myometrial invasion in patients with endometrial cancer (p < 0.05). Similarly, combining IL-6, IL-8, and Monocyte counts enhanced the accuracy of assessing endometrial cancer risk with deep myometrial invasion. The area under curve of the model is 0.753. Conclusions: Cytokines such as IL-4, IL-8, and IL-6 can serve as markers for monitoring endometrial cancer and its progression in women with abnormal uterine bleeding.
Asunto(s)
Citocinas , Neoplasias Endometriales , Humanos , Femenino , Estudios Retrospectivos , Interleucina-8 , Interleucina-4 , Interleucina-6 , Neoplasias Endometriales/complicaciones , Neoplasias Endometriales/diagnóstico , Hemorragia Uterina/etiología , CarcinogénesisRESUMEN
BACKGROUND: There is a close correlation between HPV infection and systemic immune status. The purpose of this study was to determine which lymphocytes in peripheral blood influence human papillomavirus (HPV) infection and to identify whether peripheral blood lymphocyte (PBL) subsets could be used as biomarkers to predict HPV clearance in the short term. METHODS: This study involved 716 women undergoing colposcopy from 2019 to 2021. Logistic and Cox regression were used to analyze the association of PBLs with HPV infection and clearance. Using Cox regression, bidirectional stepwise regression and the Akaike information criterion (AIC), lymphocyte prediction models were developed, with the C-index assessing performance. ROC analysis determined optimal cutoff values, and their accuracy for HPV clearance risk stratification was evaluated via KaplanâMeier and time-dependent ROC. Bootstrap resampling validated the model and cutoff values. RESULTS: Lower CD4 + T cells were associated with a higher risk of HPV, high-risk HPV, HPV18 and HPV52 infections, with corresponding ORs (95% CI) of 1.58 (1.16-2.15), 1.71 (1.23-2.36), 2.37 (1.12-5.02), and 3.67 (1.78-7.54), respectively. PBL subsets mainly affect the natural clearance of HPV, but their impact on postoperative HPV outcomes is not significant (P > 0.05). Lower T-cell and CD8 + T-cell counts, as well as a higher NK cell count, are unfavorable factors for natural HPV clearance (P < 0.05). The optimal cutoff values determined by the PBL prognostic model (T-cell percentage: 67.39%, NK cell percentage: 22.65%, CD8 + T-cell model risk score: 0.95) can effectively divide the population into high-risk and low-risk groups, accurately predicting the natural clearance of HPV. After internal validation with bootstrap resampling, the above conclusions still hold. CONCLUSIONS: CD4 + T cells were important determinants of HPV infection. T cells, NK cells, and CD8 + T cells can serve as potential biomarkers for predicting natural HPV clearance, which can aid in patient risk stratification, individualized treatment, and follow-up management.
Asunto(s)
Infecciones por Papillomavirus , Humanos , Femenino , Virus del Papiloma Humano , Estudios Retrospectivos , Linfocitos T CD4-Positivos , BiomarcadoresRESUMEN
Guest molecules containing chromophore groups encapsulated by ß-cyclodextrin (ß-CD) generate circular dichroism (CD) signals, which enables a preliminary prediction of their binding modes. However, the accurate determination of the representative binding conformation (RC) remains a challenging task due to the complex conformational space of these host-guest systems. Here, we combine a molecular dynamics/quantum mechanics/continuum solvent model (MD/QM/CSM) with induced circular dichroism (ICD) data (N. L. Pacioni, A. B. Pierini and A. V. Veglia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 319-324.) to explore the binding mechanism of ß-CD with four N-methylcarbamate molecules: promecarb (PC), bendiocarb (BC), carbaryl (CY) and carbofuran (CF). In aqueous solution, their stability decreases as: PC > BC > CY > CF. Comparing the ECD spectra computed from TD-DFT with the ICD data can help eliminate many common binding configurations and identify the RC. The host-guest binding affinities (BAs) estimated using a ONIOM2(B971:PM6)/SMD model reproduce the measured binding trend, reveal the competition between the non-covalent interaction and solvent effect and explain the large difference in their binding modes. We also examine the fluctuations in the computed BA using similar structures.
Asunto(s)
beta-Ciclodextrinas , beta-Ciclodextrinas/química , Simulación de Dinámica Molecular , SolventesRESUMEN
OBJECTIVE: Aberrant lipid metabolism is a hallmark of colorectal cancer (CRC). Squalene epoxidase (SQLE), a rate-limiting enzyme in cholesterol biosynthesis, is upregulated in CRC. Here, we aim to determine oncogenic function of SQLE and its interplay with gut microbiota in promoting colorectal tumourigenesis. DESIGN: Paired adjacent normal tissues and CRC from two cohorts were analysed (n=202). Colon-specific Sqle transgenic (Sqle tg) mice were generated by crossing Rosa26-lsl-Sqle mice to Cdx2-Cre mice. Stools were collected for metagenomic and metabolomic analyses. RESULTS: SQLE messenger RNA and protein expression was upregulated in CRC (p<0.01) and predict poor survival of patients with CRC. SQLE promoted CRC cell proliferation by inducing cell cycle progression and suppressing apoptosis. In azoxymethane-induced CRC model, Sqle tg mice showed increased tumourigenesis compared with wild-type mice (p<0.01). Integrative metagenomic and metabolomic analyses unveiled gut dysbiosis in Sqle tg mice with enriched pathogenic bacteria, which was correlated to increased secondary bile acids. Consistent with detrimental effect of secondary bile acids, gut barrier function was impaired in Sqle tg mice, with reduced tight junction proteins Jam-c and occludin. Transplantation of Sqle tg mice stool to germ-free mice impaired gut barrier function and stimulated cell proliferation compared with control mice stool. Finally, we demonstrated that terbinafine, a SQLE inhibitor, could be repurposed for CRC by synergising with oxaliplatin and 5-fluorouracil to inhibit CRC growth. CONCLUSION: This study demonstrates that SQLE mediates oncogenesis via cell intrinsic effects and modulation of gut microbiota-metabolite axis. SQLE represents a therapeutic target and prognostic marker in CRC.
Asunto(s)
Neoplasias Colorrectales , Escualeno-Monooxigenasa , Animales , Azoximetano , Ácidos y Sales Biliares , Carcinogénesis/genética , Proliferación Celular/genética , Colesterol , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Disbiosis , Fluorouracilo , Ratones , Ocludina , Oxaliplatino , ARN Mensajero , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , TerbinafinaRESUMEN
BACKGROUNDS & AIMS: Squalene epoxidase (SQLE) is the rate-limiting enzyme for cholesterol biosynthesis. We elucidated the functional significance, molecular mechanisms, and clinical impact of SQLE in nonalcoholic steatohepatitis (NASH). METHODS: We performed studies with hepatocyte-specific Sqle overexpression transgenic (Sqle tg) mice and mice given high-fat high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diet to induce NASH. SQLE downstream target carbonic anhydrase III (CA3) was identified using co-immunoprecipitation and Western Blot. Some mice were given SQLE inhibitor (terbinafine) and CA3 inhibitor (acetazolamide) to study the therapeutic effects in NASH. Human samples (N = 217) including 65 steatoses, 80 NASH, and 72 healthy controls were analyzed for SQLE levels in liver tissue and in serum. RESULTS: SQLE is highly up-regulated in human NASH and mouse models of NASH. Sqle tg mice triggered spontaneous insulin resistance, hepatic steatosis, liver injury, and accelerated HFHC or MCD diet-induced NASH development. Mechanistically, SQLE tg mice caused hepatic cholesterol accumulation, thereby triggering proinflammatory nuclear factor-κB signaling and steatohepatitis. SQLE directly bound to CA3, which induced sterol regulatory element-binding protein 1C activation, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase1 expression and de novo hepatic lipogenesis. Combined targeting SQLE (terbinafine) and CA3 (acetazolamide) synergistically ameliorated NASH in mice with superior efficacy to either drug alone. Serum SQLE with CA3 could distinguish patients with NASH from steatosis and healthy controls (area under the receiver operating characteristic curve, 0.815; 95% confidence interval, 0.758-0.871). CONCLUSIONS: SQLE drives the initiation and progression of NASH through inducing cholesterol biosynthesis, and SQLE/CA3 axis-mediated lipogenesis. Combined targeting of SQLE and CA3 confers therapeutic benefit in NASH. Serum SQLE and CA3 are novel biomarkers for the noninvasive diagnosis of patients with NASH.
Asunto(s)
Anhidrasa Carbónica III/metabolismo , Colesterol/biosíntesis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Escualeno-Monooxigenasa/metabolismo , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Lipogénesis , Hígado/metabolismo , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/etiología , Regulación hacia ArribaRESUMEN
BACKGROUND & AIMS: RNA N6-methyladenosine (m6A) modification has recently emerged as a new regulatory mechanism in cancer progression. We aimed to explore the role of the m6A regulatory enzyme METTL3 in colorectal cancer (CRC) pathogenesis and its potential as a therapeutic target. METHODS: The expression and clinical implication of METTL3 were investigated in multiple human CRC cohorts. The underlying mechanisms of METTL3 in CRC were investigated by integrative m6A sequencing, RNA sequencing, and ribosome profiling analyses. The efficacy of targeting METTL3 in CRC treatment was elucidated in CRC cell lines, patient-derived CRC organoids, and Mettl3-knockout mouse models. RESULTS: Using targeted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 dropout screening, we identified METTL3 as the top essential m6A regulatory enzyme in CRC. METTL3 was overexpressed in 62.2% (79/127) and 88.0% (44/50) of primary CRCs from 2 independent cohorts. High METTL3 expression predicted poor survival in patients with CRC (n = 374, P < .01). Functionally, silencing METTL3 suppressed tumorigenesis in CRC cells, human-derived primary CRC organoids, and Mettl3-knockout mouse models. We discovered the novel functional m6A methyltransferase domain of METTL3 in CRC cells by domain-focused CRISPR screening and mutagenesis assays. Mechanistically, METTL3 directly induced the m6A-GLUT1-mTORC1 axis as identified by integrated m6A sequencing, RNA sequencing, ribosome sequencing, and functional validation. METTL3 induced GLUT1 translation in an m6A-dependent manner, which subsequently promoted glucose uptake and lactate production, leading to the activation of mTORC1 signaling and CRC development. Furthermore, inhibition of mTORC1 potentiated the anticancer effect of METTL3 silencing in CRC patient-derived organoids and METTL3 transgenic mouse models. CONCLUSIONS: METTL3 promotes CRC by activating the m6A-GLUT1-mTORC1 axis. METTL3 is a promising therapeutic target for the treatment of CRC.
Asunto(s)
Neoplasias Colorrectales/genética , Transportador de Glucosa de Tipo 1/genética , Metiltransferasas/metabolismo , Neoplasias Experimentales/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Anciano , Animales , Azoximetano/administración & dosificación , Azoximetano/toxicidad , Carcinogénesis , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Metilación de ADN , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metiltransferasas/genética , Ratones Noqueados , Persona de Mediana Edad , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/patología , Transducción de Señal/genética , Regulación hacia ArribaRESUMEN
BACKGROUND & AIMS: Mutant KRAS promotes glutaminolysis, a process that uses steps from the tricarboxylic cycle to convert glutamine to α-ketoglutarate and other molecules via glutaminase and SLC25A22. This results in inhibition of demethylases and epigenetic alterations in cells that increase proliferation and stem cell features. We investigated whether mutant KRAS-mediated glutaminolysis affects the epigenomes and activities of colorectal cancer (CRC) cells. METHODS: We created ApcminKrasG12D mice with intestine-specific knockout of SLC25A22 (ApcminKrasG12DSLC25A22fl/fl mice). Intestine tissues were collected and analyzed by histology, immunohistochemistry, and DNA methylation assays; organoids were derived and studied for stem cell features, along with organoids derived from 2 human colorectal tumor specimens. Colon epithelial cells (1CT) and CRC cells (DLD1, DKS8, HKE3, and HCT116) that expressed mutant KRAS, with or without knockdown of SLC25A22 or other proteins, were deprived of glutamine or glucose and assayed for proliferation, colony formation, glucose or glutamine consumption, and apoptosis; gene expression patterns were analyzed by RNA sequencing, proteins by immunoblots, and metabolites by liquid chromatography-mass spectrometry, with [U-13C5]-glutamine as a tracer. Cells and organoids with knocked down, knocked out, or overexpressed proteins were analyzed for DNA methylation at CpG sites using arrays. We performed immunohistochemical analyses of colorectal tumor samples from 130 patients in Hong Kong (57 with KRAS mutations) and Kaplan-Meier analyses of survival. We analyzed gene expression levels of colorectal tumor samples in The Cancer Genome Atlas. RESULTS: CRC cells that express activated KRAS required glutamine for survival, and rapidly incorporated it into the tricarboxylic cycle (glutaminolysis); this process required SLC25A22. Cells incubated with succinate and non-essential amino acids could proliferate under glutamine-free conditions. Mutant KRAS cells maintained a low ratio of α-ketoglutarate to succinate, resulting in reduced 5-hydroxymethylcytosine-a marker of DNA demethylation, and hypermethylation at CpG sites. Many of the hypermethylated genes were in the WNT signaling pathway and at the protocadherin gene cluster on chromosome 5q31. CRC cells without mutant KRAS, or with mutant KRAS and knockout of SLC25A22, expressed protocadherin genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6)-DNA was not methylated at these loci. Expression of the protocadherin genes reduced WNT signaling to ß-catenin and expression of the stem cell marker LGR5. ApcminKrasG12DSLC25A22fl/fl mice developed fewer colon tumors than ApcminKrasG12D mice (P < .01). Organoids from ApcminKrasG12DSLC25A22fl/fl mice had reduced expression of LGR5 and other markers of stemness compared with organoids derived from ApcminKrasG12D mice. Knockdown of SLC25A22 in human colorectal tumor organoids reduced clonogenicity. Knockdown of lysine demethylases, or succinate supplementation, restored expression of LGR5 to SLC25A22-knockout CRC cells. Knockout of SLC25A22 in CRC cells that express mutant KRAS increased their sensitivity to 5-fluorouacil. Level of SLC25A22 correlated with levels of LGR5, nuclear ß-catenin, and a stem cell-associated gene expression pattern in human colorectal tumors with mutations in KRAS and reduced survival times of patients. CONCLUSIONS: In CRC cells that express activated KRAS, SLC25A22 promotes accumulation of succinate, resulting in increased DNA methylation, activation of WNT signaling to ß-catenin, increased expression of LGR5, proliferation, stem cell features, and resistance to 5-fluorouacil. Strategies to disrupt this pathway might be developed for treatment of CRC.
Asunto(s)
Colon/patología , Neoplasias Colorrectales/genética , Mucosa Intestinal/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Desmetilación del ADN , Resistencia a Antineoplásicos , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glutamina/metabolismo , Hong Kong/epidemiología , Humanos , Estimación de Kaplan-Meier , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Microarray expression profiles of lncRNAs and mRNAs were investigated in HepG2 cells treated with 20 µg/ml ginsenoside Rh2 as well as in ginsenoside Rh2-untreated cells. Microarray analysis showed 618 upregulated lncRNAs and 161 downregulated lncRNAs in HepG2 cells treated with ginsenoside Rh2 compared with the control group. Moreover, three differentially expressed lncRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This may be beneficial to patients as an anti-cancer treatment and potentially provide novel targets for HCC (hepatocellular carcinoma) therapy.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Ginsenósidos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Análisis por Micromatrices/métodos , ARN Largo no Codificante/análisis , Carcinoma Hepatocelular/genética , Ontología de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , ARN Largo no Codificante/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de SeñalRESUMEN
BACKGROUND & AIMS: O-GlcNAc transferase (OGT) is a unique glycosyltransferase involved in metabolic reprogramming. We investigated the functional role of OGT in non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). METHODS: The biological function of OGT in NAFLD-HCC was determined by gain- or loss- of OGT functional assays in vitro and in nude mice. OGT target factors and pathways were identified by liquid chromatography-tandem mass spectrometry (LC-MS), promoter luciferase assay, DNA binding activity assay and Western blot. RESULTS: OGT was upregulated in 12 out of 18 (66.7%) NAFLD-HCC tumor tissues by transcriptome sequencing, which was confirmed in additional NAFLD-HCC tumor tissues and cell lines. Biofunctional investigation demonstrated that OGT significantly increased cell growth (p<0.001), clonogenicity (p<0.01), migration and invasion (p<0.05) ability in vitro, and promoted xenograft tumor growth as well as lung metastasis in nude mice. The oncogenic effect of OGT was investigated, we found that OGT significantly induced palmitic acid production identified by LC-MS, which enhanced the protein expression of endoplasmic reticulum (ER) stress masters of glucose-regulated protein 78 and inositol-requiring enzyme 1α. Consequently, OGT significantly activated JNK/c-jun/AP-1 cascade by increasing protein expression of p-JNK, p-c-Jun and activation of AP-1; and induced NF-κB pathway through enhancing the protein levels of p-IKKα/ p-IKKß, p-p65, p-p50 and the NF-κB DNA binding activity. Notably, OGT inhibition by its antagonist (ST045849) suppressed cell proliferation in vitro (p<0.001) and in xenograft mice models (p<0.05). CONCLUSIONS: OGT plays an oncogenic role in NAFLD-associated HCC through regulating palmitic acid and inducing ER stress, consequently activating oncogenic JNK/c-jun/AP-1 and NF-κB cascades. LAY SUMMARY: OGT, a unique glycosyltransferase enzyme, was identified to be upregulated in non-alcoholic fatty liver disease-associated hepatocellular carcinoma tissues by transcriptome sequencing. Here, we found that OGT plays a role in cancer by promoting tumor growth and metastasis in both cell models and animal models. This effect is mediated by the induction of palmitic acid.
Asunto(s)
Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Estrés del Retículo Endoplásmico , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , N-Acetilglucosaminiltransferasas/genética , Ácido Palmítico/metabolismo , Transducción de Señal , Trasplante Heterólogo , Regulación hacia ArribaRESUMEN
The study aimed to develop and validate a preoperative scoring system to predict the risk of lymph node metastasis (LNM) in cervical cancer (CC). A total of 426 stage IB1-IIA1 CC patients were randomly divided into two sets. A logistic regression model was used to determine independent factors that contribute to LNM. A preoperative scoring system was developed based on beta (ß) coefficients. An area under the receiver operating curve (AUC) was used to test for model discrimination. Five-year overall survival (OS) rate was 91.7%. Multivariable logistic regression analysis showed that FIGO stage, tumor size, depth of invasion on MRI, and squamous cell carcinoma antigen levels were independent risk factors in the development set (all P < 0.05). The AUCs of the scoring system for the development and validation sets were 0.833 (95% CI = 0.757-0.909) and 0.767 (95% CI = 0.634-0.891), respectively. Patients who scored 0-2, 3-5, and 6-8 were classified into low-risk, medium-risk, and high-risk groups. Predicted rates were in accord with observed rates in both sets. The 5-year OS rates of the new groups were also significantly different for the entire group, development set, and validation set (all P < 0.05). LNM affects the prognosis of CC patients. The scoring system can be used to assist in evaluating the risk of LNM in CC patients preoperatively. It is easy to obtain and can provide reference for clinical treatment decision-making.
Asunto(s)
Metástasis Linfática , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/cirugía , Neoplasias del Cuello Uterino/mortalidad , Persona de Mediana Edad , Adulto , Factores de Riesgo , Estadificación de Neoplasias , Pronóstico , Anciano , Curva ROC , Ganglios Linfáticos/patología , Periodo Preoperatorio , Medición de Riesgo/métodosRESUMEN
BACKGROUND: Metabolic disorders are significant risk factors for liver cancer, particularly Hepatocellular Carcinoma (HCC). However, the molecular genetic basis of metabolic reprogramming in the liver remains largely uncertain. OBJECTIVE: This study aimed to investigate some novel prognostic biomarkers in HCC by using proteogenomic and transcriptomic analysis and explore the potential role of specific prognostic genes in HCC. METHODS: Here, we have presented a proteogenomic analysis of 10 pairs of HCC. Protein co-expression and pathway analysis were performed to investigate the biological characteristics of HCC. Protein and mRNA expression profiles of multi-cohorts were integrated to detect novel prognostic protein markers of HCC. The carcinogenic roles of candidate prognostic markers were further evaluated by MTS assay, colony formation, monolayer wound healing assay, and xenograft models. RESULTS: A total of 2086 proteins with significantly different expressions were detected in HCC. Pathways related to oncogenic signaling and insulin-related metabolism have been found to be dysregulated and differentially regulated in HCC. We have identified the novel prognostic biomarkers, KIF5B, involved in liver metabolic reprogramming. The biomarkers were identified using multivariable COX regression analysis from two independent proteomic datasets (Fudan Cohort and our recruited cohort) and the TCGA mRNA database. Both the protein and mRNA up-regulation of KIF5B have been found to be associated with a poor clinical outcome in HCC. Insulin activated the protein expression of KIF5B in HCC. Knocking out KIF5B expression by sgRNA decreased the protein expression of FASN and SCD1 and the intracellular triglyceride concentration. Silencing KIF5B suppressed HCC cell proliferation and colony formation in vitro, as well as HCC growth in xenograft models. CONCLUSION: Our findings have suggested KIF5B protein to function as a novel prognostic biomarker in HCC. KIF5B expression has been found to activate the AKT/mTOR pathway and reprogram triglyceride metabolism, leading to HCC development. Targeting KIF5B may be an effective strategy in the clinical treatment of HCC.
RESUMEN
Objective: This study introduced a novel subtype classification method for endometrial cancer (EC) with mismatch repair deficiency (MMRd) by employing immune status and prognosis as the foundational criteria. The goal was to enhance treatment guidance through precise subtype delineation. Methods: Study Cohort: This study encompassed a cohort of 119 patients diagnosed with MMRd-EC between 2015 and 2022. Analyses using t-tests and Mann-Whitney U-tests were performed to assess prognostic markers and peripheral blood immune cell profiles in patients with MutS deficiency (MutS-d) versus those with MutL deficiency (MutL-d). Logistic regression analysis was used to identify independent risk factors. Bioinformatics Analysis: An online database was used to assess the prognostic implications, immune cell infiltration, and immune checkpoint involvement associated with the deficiency of MutS versus MutL in EC. Results: Patients with MutL-d exhibited heightened risk factors, including elevated cancer grade and increased myometrial invasion, leading to poorer prognosis and shorter overall survival and progression-free survival. Regarding systemic immune status, patients with MutL-d demonstrated decreased peripheral blood lymphocyte percentage, lymphocyte count, and CD8+ T cell percentage. For local immunity, the infiltration of natural killer cells, CD8+ T cells, and cytotoxic T lymphocytes in the tumor tissue was reduced in patients with MutL-d. Additionally, patients with MutL-d exhibited lower expression of immune checkpoint markers. The composition of immune subtypes and survival outcomes also indicate that patients with MutL-d have a poorer immune status and prognosis than the patients with MutS-d. Conclusion: Patients with MMRd-EC can be subclassified according to MutS or MutL deficiency. Patients with MutS-d exhibited better immune status, prognosis, and immunotherapy benefits than those with MutL-d. These results can help guide patients to a more precise treatment.
RESUMEN
2,4-dinitroanisole (DNAN), an insensitive explosive, has replaced trinitrotoluene (TNT) in many melt-cast explosives to improve the safety of ammunition and becomes a promising material to desensitize novel explosives of high sensitivity. Here, we combine thermogravimetric-Fourier transform infrared spectrometry-Mass spectrometry (TG-FTIR-MS), density functional theory (DFT), and ReaxFF molecular dynamics (MD) to investigate its thermal decomposition and detonation mechanisms. As revealed by TG-FTIR-MS, the thermal decomposition of DNAN starts at ca. 453 K when highly active NO2 is produced and quickly converted to NO resulting in the formation of a large amount of Ph(OH)(OH2)OCH3+. DFT calculations show that the activation energy of DNAN is higher than that of TNT due to the lack of α-H. Further steps in both thermal decomposition and detonation reactions of the DNAN are dominated by bimolecular O-transfers. ReaxFF MD indicates that DNAN has a lower heat of explosion than TNT, in accordance with the observation that the activation energies of polynitroaromatic explosives are inversely proportional to their heat of explosion. The inactive -OCH3 group and less nitro groups also render DNAN higher thermal stability than TNT.
RESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis in patients. Its pathogenesis is a complex process of multi-factors and multi-steps. However, the etiology and exact molecular mechanism are not completely clear. METHODS: Here, we constructed a specific-expressed network based on RNA sequencing data. Gene and miRNA expression profiles and clinical evidence were integrated to detect hepatocellular carcinoma survival modules. Finally, we attempted to identify potential key biomarkers and drug targets by integrating drug sensitivity analysis and immune infiltration analysis. RESULTS: A total of 42 prognostic modules for hepatocellular carcinoma were detected. The prognostic modules were significantly enriched with known cancer-related molecules and 12.93 % molecules of prognostic modules had been found were the targets of small molecule drug. In addition, we found that 38 of 42 (90.48 %) essential genes were associated with the proportions of at least one of the 7 immune cell types. CONCLUSION: We integrated clinical prognosis information, RNA sequencing data, and drug activity data to explore risk modules of hepatocellular carcinoma. Through drug sensitivity analysis and immune infiltration analysis, we assessed the value of hub genes in the modules as potential biomarkers and drug targets for hepatocellular carcinoma. The protocol provides new insight into parsing the molecular mechanism and theoretical basis of hepatocellular carcinoma.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Genes Esenciales , Neoplasias Hepáticas/genética , Biomarcadores , Biomarcadores de TumorRESUMEN
Purpose: The platelet-to-lymphocyte ratio (PLR) is considered correlated with cancer prognosis including cervical cancer, in addition to high-risk papillomavirus (HR-HPV) infection, of which the predictive value in prognosis of high-grade squamous intraepithelial lesions (HSILs) remains unknown. Here, the prognostic predictive value of PLR in HSIL after loop electrosurgical excision procedure (LEEP) was evaluated. Patients and Methods: This study included 335 nonpregnant participants with histopathologically confirmed HSIL and 3- and 5-year follow-ups from the Fujian Cervical Lesions Screening Cohorts (FCLSCs) between September 2016 and September 2018. PLR and other variables were evaluated to identify the factors related to the recurrence/residual cervical intraepithelial neoplasia (CIN)-free survival (RFS), namely, the time from LEEP at baseline to first detection of recurrence/residual CIN or end of follow-up, by logistic and Cox regression. Results: In the KaplanâMeier analysis, HR-HPV infection (p=0.049/0.012), higher PLR (p=0.031/0.038), and gland invasion (p=0.047) had a higher risk for recurrence/residual CIN at the 3-/5-year follow-up. The univariate logistic and Cox regression analyses showed significant differences and a higher cumulative risk in patients with HR-HPV infection (OR=3.917, p=0.026; HR=3.996, p=0.020) and higher PLR (OR=2.295, p=0.041; HR=2.161, p=0.030) at the 5-year follow-up. The findings by multivariate Cox regression analysis were similar, indicating a poor prognosis for patients with HR-HPV infection (HR=3.901, p=0.023) and higher PLR (HR=2.082, p=0.038) at the 5-year follow-up. The calibration plot showed a better model fit for RFS at the 3-year follow-up. Conclusion: Preoperative PLR level and HR-HPV infection could be available markers for predicting recurrence/residual disease of HSIL after LEEP. Clinically, combining PLR with HR-HPV tests may provide novel evaluation method and reference for management in post-treatment patients with cervical precancerous lesions.
RESUMEN
Anti-angiogenesis therapy is an emerging strategy for cancer treatment. This therapy has many advantages over existing treatments, such as fewer side effects, fewer resistance problems, and a broader tumor type spectrum. Integrin αvß3 is a heterodimeric transmembrane glycoprotein that has been demonstrated to play a key role in tumor angiogenesis and metastasis. We have used a phage antibody display to humanize a mouse monoclonal antibody (mAb E10) against human integrin αvß3 with a predetermined CDR3 gene. Three human phage antibodies were developed. Analysis of the humanized phage antibodies by phage ELISA revealed that the antibodies retained high antigen-binding activity and detected the same epitope as the parent mAb E10. A humanized single chain Fv (scFv) antibody was expressed in Escherichia coli in a soluble form. Analysis of the purified scFv indicated that it has the same specificity and affinity as the original mAb. Cell viability assays and xenograft model results suggested that the humanized scFv possesses anti-tumor growth activity in vitro and in vivo. This successful production of a humanized scFv with the ability to inhibit αvß3-mediated cancer cell growth may provide a novel candidate for integrin αvß3-targeted therapy.
Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Regiones Determinantes de Complementariedad/inmunología , Integrina alfaVbeta3/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/genética , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Humanos , Integrina alfaVbeta3/genética , Ratones , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genéticaRESUMEN
Background: The characteristics of high-risk human papillomavirus (HR-HPV) infection in different pathological types of cervical cancer in China are unclear. The aim of this study was to evaluate HR-HPV genotypes and age stratification with cervical squamous cell carcinoma (SCC) and adenocarcinoma (ADC) in China. Materials and Methods: Patients diagnosed with cervical cancer by histopathology in Fujian Maternity and Child Health Hospital from January 1, 2014, to December 31, 2017, were included in this study. The HR-HPV genotype was analyzed in cervical specimens. Logistic regression was used to calculate odds ratios (ORs). All tests of statistical significance were two-sided, and the P value<0.05. Results: A total of 1,590,476 women were screened for cervical cancer, and 688 cervical cancers were detected, including 554 SCC and 93 ADC. The overall HR-HPV infection rate in SCC was higher than that in ADC (91.2% vs 81.7%, P=0.005). HPV-16 was the most prevalent genotype in SCC (70.0%) but was only 31.2% in ADC (P<0.001). However, the prevalence of HPV-18 in ADC was significantly higher than that in SCC (45.2% vs 7.0%; P<0.001). In SCC, the prevalence of HPV-16 was consistently much higher than that of HPV-18 regardless of age group. Among ADC, the prevalence of HPV-18 was higher than that of HPV-16 in women aged ≥45 years. Interestingly, in those aged <35 years, the highest prevalence was observed for HPV-16. HPV-18 infection has the highest risk of ADC (OR= 12.109; P< 0.001), and HPV-45 and HPV-51 were also found to be associated with the occurrence of ADC. However, HPV-16 infection greatly increased the risk of having histological SCC. Conclusion: HPV-16 and HPV-18 infections are key risk factors for SCC and ADC. The use of HR-HPV genotyping tests in cervical cancer screening and vaccination against major HPV genotypes could reduce the incidence of cervical cancer.