Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neuroimage ; 207: 116342, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31722231

RESUMEN

Quantitative functional magnetic resonance imaging methods make it possible to measure cerebral oxygen metabolism (CMRO2) in the human brain. Current methods require the subject to breathe special gas mixtures (hypercapnia and hyperoxia). We tested a noninvasive suite of methods to measure absolute CMRO2 in both baseline and dynamic activation states without the use of special gases: arterial spin labeling (ASL) to measure baseline and activation cerebral blood flow (CBF), with concurrent measurement of the blood oxygenation level dependent (BOLD) signal as a dynamic change in tissue R2*; VSEAN to estimate baseline O2 extraction fraction (OEF) from a measurement of venous blood R2, which in combination with the baseline CBF measurement yields an estimate of baseline CMRO2; and FLAIR-GESSE to measure tissue R2' to estimate the scaling parameter needed for calculating the change in CMRO2 in response to a stimulus with the calibrated BOLD method. Here we describe results for a study sample of 17 subjects (8 female, mean age = 25.3 years, range 21-31 years). The primary findings were that OEF values measured with the VSEAN method were in good agreement with previous PET findings, while estimates of the dynamic change in CMRO2 in response to a visual stimulus were in good agreement between the traditional hypercapnia calibration and calibration based on R2'. These results support the potential of gas-free methods for quantitative physiological measurements.


Asunto(s)
Encéfalo/irrigación sanguínea , Hipercapnia/fisiopatología , Hiperoxia/fisiopatología , Consumo de Oxígeno/fisiología , Oxígeno/análisis , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Oxígeno/sangre , Adulto Joven
2.
Neuroimage ; 185: 154-163, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30315908

RESUMEN

Cerebral blood flow (CBF) and blood oxygenation level dependent (BOLD) signal measurements make it possible to estimate steady-state changes in the cerebral metabolic rate of oxygen (CMRO2) with a calibrated BOLD method. However, extending this approach to measure the dynamics of CMRO2 requires an additional assumption: that deoxygenated cerebral blood volume (CBVdHb) follows CBF in a predictable way. A test-case for this assumption is the BOLD post-stimulus undershoot, for which one proposed explanation is a strong uncoupling of flow and blood volume with an elevated level of CBVdHb during the post-stimulus period compared to baseline due to slow blood volume recovery (Balloon Model). A challenge in testing this model is that CBVdHb differs from total blood volume, which can be measured with other techniques. In this study, the basic hypothesis of elevated CBVdHb during the undershoot was tested, based on the idea that the BOLD signal change when a subject switches from breathing a normoxic gas to breathing a hyperoxic gas is proportional to the absolute CBVdHb. In 19 subjects (8F), dual-echo BOLD responses were measured in primary visual cortex during a flickering radial checkerboard stimulus in normoxia, and the identical experiment was repeated in hyperoxia (50% O2/balance N2). The BOLD signal differences between normoxia and hyperoxia for the pre-stimulus baseline, stimulus, and post-stimulus periods were compared using an equivalent BOLD signal calculated from measured R2* changes to eliminate signal drifts. Relative to the pre-stimulus baseline, the average BOLD signal change from normoxia to hyperoxia was negative during the undershoot period (p = 0.0251), consistent with a reduction of CBVdHb and contrary to the prediction of the Balloon Model. Based on these results, the BOLD post-stimulus undershoot does not represent a case of strong uncoupling of CBVdHb and CBF, supporting the extension of current calibrated BOLD methods to estimate the dynamics of CMRO2.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Encéfalo/fisiología , Volumen Sanguíneo Cerebral/fisiología , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Hiperoxia/metabolismo , Imagen por Resonancia Magnética , Masculino , Adulto Joven
3.
Nano Lett ; 14(5): 2293-8, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24655064

RESUMEN

Here we introduce a form of chromatography that can be imposed on the membrane of a living cell. A cell-cell signaling interaction is reconstituted in a hybrid live cell-supported membrane junction. The chromatographic material consists of a hexagonally ordered array of gold nanoparticles (nanodot array), which is fabricated onto the underlying substrate. While individual membrane components move freely throughout the array, the movement of larger assemblies is impeded if they exceed the physical dimensions of the array. This tactile approach to probing membrane structures in living cells reveals organizational aspects of the membrane environment unobservable by other techniques.


Asunto(s)
Membrana Celular/química , Cromatografía/métodos , Nanopartículas del Metal/química , Nanotubos/química , Membrana Celular/metabolismo , Oro/química , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda