Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.943
Filtrar
1.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36610399

RESUMEN

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Asunto(s)
Envejecimiento , Retrovirus Endógenos , Anciano , Animales , Humanos , Ratones , Envejecimiento/genética , Envejecimiento/patología , Senescencia Celular , Retrovirus Endógenos/genética , Primates
2.
Cell ; 180(5): 984-1001.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109414

RESUMEN

Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.


Asunto(s)
Envejecimiento/genética , Restricción Calórica , Sistema Inmunológico/metabolismo , Transcriptoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Reprogramación Celular/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ratas , Análisis de la Célula Individual
3.
Cell ; 180(3): 585-600.e19, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004457

RESUMEN

Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.


Asunto(s)
Envejecimiento/genética , Ovario/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma , Anciano , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Atlas como Asunto , Biomarcadores , Línea Celular Tumoral , Femenino , Células de la Granulosa/metabolismo , Humanos , Macaca fascicularis , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
4.
Nat Rev Mol Cell Biol ; 21(3): 137-150, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32020082

RESUMEN

Ageing is characterized by the functional decline of tissues and organs and the increased risk of ageing-associated disorders. Several 'rejuvenating' interventions have been proposed to delay ageing and the onset of age-associated decline and disease to extend healthspan and lifespan. These interventions include metabolic manipulation, partial reprogramming, heterochronic parabiosis, pharmaceutical administration and senescent cell ablation. As the ageing process is associated with altered epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, and non-coding RNAs, the manipulation of these mechanisms is central to the effectiveness of age-delaying interventions. This Review discusses the epigenetic changes that occur during ageing and the rapidly increasing knowledge of how these epigenetic mechanisms have an effect on healthspan and lifespan extension, and outlines questions to guide future research on interventions to rejuvenate the epigenome and delay ageing processes.


Asunto(s)
Envejecimiento/genética , Epigénesis Genética/genética , Rejuvenecimiento/fisiología , Animales , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Epigenoma/genética , Epigenómica/métodos , Regulación de la Expresión Génica/genética , Código de Histonas/genética , Humanos , Longevidad/genética
5.
Mol Cell ; 84(1): 34-54, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37963471

RESUMEN

Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenoma , Estrés Oxidativo
6.
Cell ; 165(6): 1361-1374, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259148

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal premature aging disorder. The disease is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A, leading, through unknown mechanisms, to diverse morphological, epigenetic, and genomic damage and to mesenchymal stem cell (MSC) attrition in vivo. Using a high-throughput siRNA screen, we identify the NRF2 antioxidant pathway as a driver mechanism in HGPS. Progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired NRF2 transcriptional activity and consequently increased chronic oxidative stress. Suppressed NRF2 activity or increased oxidative stress is sufficient to recapitulate HGPS aging defects, whereas reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects and restores in vivo viability of MSCs in an animal model. These findings identify repression of the NRF2-mediated antioxidative response as a key contributor to the premature aging phenotype.


Asunto(s)
Envejecimiento Prematuro/metabolismo , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Progeria/metabolismo , Envejecimiento Prematuro/genética , Línea Celular , Supervivencia Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Progeria/genética , ARN Interferente Pequeño , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Cell ; 161(3): 459-469, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910206

RESUMEN

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber's hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Asunto(s)
Marcación de Gen , Enfermedades Mitocondriales/genética , Animales , Fusión Celular , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Enfermedades Mitocondriales/prevención & control , Mutación , Oocitos/metabolismo
8.
Nature ; 624(7992): 611-620, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907096

RESUMEN

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Asunto(s)
Senescencia Celular , Quitinasas , Microglía , Neuronas Motoras , Primates , Médula Espinal , Animales , Humanos , Biomarcadores/metabolismo , Quitinasas/metabolismo , Microglía/enzimología , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Primates/metabolismo , Reproducibilidad de los Resultados , Análisis de Expresión Génica de una Sola Célula , Médula Espinal/metabolismo , Médula Espinal/patología
9.
Mol Cell ; 72(1): 71-83.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220561

RESUMEN

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/genética , Neoplasias/patología , Fosforilación , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nucleic Acids Res ; 52(D1): D909-D918, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870433

RESUMEN

Diverse individuals age at different rates and display variable susceptibilities to tissue aging, functional decline and aging-related diseases. Centenarians, exemplifying extreme longevity, serve as models for healthy aging. The field of human aging and longevity research is rapidly advancing, garnering significant attention and accumulating substantial data in recent years. Omics technologies, encompassing phenomics, genomics, transcriptomics, proteomics, metabolomics and microbiomics, have provided multidimensional insights and revolutionized cohort-based investigations into human aging and longevity. Accumulated data, covering diverse cells, tissues and cohorts across the lifespan necessitates the establishment of an open and integrated database. Addressing this, we established the Human Aging and Longevity Landscape (HALL), a comprehensive multi-omics repository encompassing a diverse spectrum of human cohorts, spanning from young adults to centenarians. The core objective of HALL is to foster healthy aging by offering an extensive repository of information on biomarkers that gauge the trajectory of human aging. Moreover, the database facilitates the development of diagnostic tools for aging-related conditions and empowers targeted interventions to enhance longevity. HALL is publicly available at https://ngdc.cncb.ac.cn/hall/index.


Asunto(s)
Envejecimiento , Bases de Datos Factuales , Longevidad , Multiómica , Anciano de 80 o más Años , Humanos , Adulto Joven , Envejecimiento/genética , Biomarcadores , Susceptibilidad a Enfermedades , Genómica , Longevidad/genética
11.
Mol Microbiol ; 121(5): 971-983, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38480679

RESUMEN

Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 µM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.


Asunto(s)
Replicación del ADN , Proteínas de Escherichia coli , Escherichia coli , Azufre , Escherichia coli/metabolismo , Escherichia coli/genética , Azufre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , ADN Bacteriano/metabolismo , Enzimas de Restricción del ADN/metabolismo , Unión Proteica , ADN/metabolismo , Sitios de Unión
12.
EMBO J ; 40(4): e104729, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33349972

RESUMEN

The regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells. We characterized hnRNPLL, which mainly functions as a global regulator of alternative splicing in ES cells. Specifically, hnRNPLL promotes multiple ES cell-preferred exon skipping events during the onset of ES cell differentiation. hnRNPLL depletion thus leads to sustained expression of ES cell-preferred isoforms, resulting in a differentiation deficiency that causes developmental defects and growth impairment in hnRNPLL-KO mice. In particular, hnRNPLL-mediated alternative splicing of two transcription factors, Bptf and Tbx3, is important for pluripotency exit. These data uncover the critical role of RBPs in pluripotency exit and suggest the application of targeting RBPs in controlling ES cell fate.


Asunto(s)
Empalme Alternativo , Antígenos Nucleares/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Antígenos Nucleares/genética , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Células Madre Pluripotentes/metabolismo , Isoformas de Proteínas , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
13.
EMBO Rep ; 24(8): e56439, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306027

RESUMEN

Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.


Asunto(s)
Proteína Disulfuro Isomerasas , Pliegue de Proteína , Humanos , Anciano , Oxidación-Reducción , Proteína Disulfuro Isomerasas/genética , Retículo Endoplásmico/metabolismo , Estrés Oxidativo
14.
Nucleic Acids Res ; 51(19): 10782-10794, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702119

RESUMEN

Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.


Asunto(s)
Edición de ARN , Humanos , Adenosina Desaminasa/metabolismo , ADN/química , Edición Génica , ARN/metabolismo , Azufre/química
15.
Nucleic Acids Res ; 51(D1): D1061-D1066, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305824

RESUMEN

Commitment to specific cell lineages is critical for mammalian embryonic development. Lineage determination, differentiation, maintenance, and organogenesis result in diverse life forms composed of multiple cell types. To understand the formation and maintenance of living individuals, including human beings, a comprehensive database that integrates multi-omic information underlying lineage differentiation across multiple species is urgently needed. Here, we construct Lineage Landscape, a database that compiles, analyzes and visualizes transcriptomic and epigenomic information related to lineage development in a collection of species. This landscape draws together datasets that capture the ongoing changes in cell lineages from classic model organisms to human beings throughout embryonic, fetal, adult, and aged stages, providing comprehensive, open-access information that is useful to researchers of a broad spectrum of life science disciplines. Lineage Landscape contains single-cell gene expression and bulk transcriptomic, DNA methylation, histone modifications, and chromatin accessibility profiles. Using this database, users can explore genes of interest that exhibit dynamic expression patterns at the transcriptional or epigenetic levels at different stages of lineage development. Lineage Landscape currently includes over 6.6 million cells, 15 million differentially expressed genes and 36 million data entries across 10 species and 34 organs. Lineage Landscape is free to access, browse, search, and download at http://data.iscr.ac.cn/lineage/#/home.


Asunto(s)
Linaje de la Célula , Mamíferos , Animales , Humanos , Diferenciación Celular , Cromatina/genética , Bases de Datos Factuales , Metilación de ADN , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Expresión Génica
16.
Nucleic Acids Res ; 51(2): 501-516, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35929025

RESUMEN

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.


How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.


Asunto(s)
Análisis de la Célula Individual , Animales , Ratones , Análisis de Secuencia de ARN , Pez Cebra/crecimiento & desarrollo , Drosophila/crecimiento & desarrollo
17.
PLoS Genet ; 18(8): e1010374, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36026524

RESUMEN

Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using 15N labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHCα. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.


Asunto(s)
Dineínas Axonemales , Chlamydomonas , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Axonema/genética , Axonema/metabolismo , Chlamydomonas/metabolismo , Cilios/genética , Cilios/metabolismo , Dineínas/metabolismo , Flagelos/genética , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
18.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211606

RESUMEN

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
19.
Small ; 20(6): e2304969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771192

RESUMEN

Magnesium-ion batteries are widely studied for its environmentally friendly, low-cost, and high volumetric energy density. In this work, the solvothermal method is used to prepare titanium dioxide bronze (TiO2 -B) nanoflowers with different nickel (Ni) doping concentrations for use in magnesium ion batteries as cathode materials. As Ni doping enhances the electrical conductivity of TiO2 -B and promotes magnesium ion diffusion, the band gap of TiO2 -B host material can be significantly reduced, and as Ni content increases, diffusion contributes more to capacity. According to the electrochemical test, TiO2 -B exhibits excellent electrochemical performance when the Ni element doping content is 2 at% and it is coated with reduced graphene oxide@carbon nanotube (RGO@CNT). At a current density of 100 mA g-1 , NT-2/RGO@CNT discharge specific capacity is as high as 167.5 mAh g-1 , which is 2.36 times of the specific discharge capacity of pure TiO2 -B. It is a very valuable research material for magnesium ion battery cathode materials.

20.
Small ; : e2311435, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461533

RESUMEN

All weather, high-efficiency, energy-saving anti-icing/de-icing materials are of great importance for solving the problem of ice accumulation on outdoor equipment surfaces. In this study, a composite material with energy storage, active electro-/photo-thermal de-icing and passive super-hydrophobic anti-icing properties is proposed. Fluorinated epoxy resin and MWCNTs/PTFE particles are used to prepare the top multifunctional anti-icing/de-icing layer, which exhibited super-hydrophobicity with water contact angle greater than 155° and conductivity higher than 69 S m-1 . The super-hydrophobic durability of the top layer is verified through tape peeling and sandpaper abrasion tests. The surface can be heated by applying on voltage or light illumination, showing efficient electro-/photo-thermal and all-day anti-icing/de-icing performance. The oleogel material at the bottom layer is capable to absorb energy during heating process and release it during cooling process by phase transition, which greatly delayed the freezing time and saved energy. The icing test of single ice droplet, electro-/photo-thermal de-icing and defrosting tests also proved the high efficiency and energy saving of the anti-icing/de-icing strategy. This study provided a new way to manufacture multi-functional materials for practical anti-icing/de-icing applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda