RESUMEN
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, characterized by symptoms of age-inappropriate inattention, hyperactivity, and impulsivity. Apart from behavioral symptoms investigated by psychiatric methods, there is no standard biological test to diagnose ADHD. This study aimed to explore whether the radiomics features based on resting-state functional magnetic resonance (rs-fMRI) have more discriminative power for the diagnosis of ADHD. The rs-fMRI of 187 subjects with ADHD and 187 healthy controls were collected from 5 sites of ADHD-200 Consortium. A total of four preprocessed rs-fMRI images including regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), voxel-mirrored homotopic connectivity (VMHC) and network degree centrality (DC) were used in this study. From each of the four images, we extracted 93 radiomics features within each of 116 automated anatomical labeling brain areas, resulting in a total of 43,152 features for each subject. After dimension reduction and feature selection, 19 radiomics features were retained (5 from ALFF, 9 from ReHo, 3 from VMHC and 2 from DC). By training and optimizing a support vector machine model using the retained features of training dataset, we achieved the accuracy of 76.3% and 77.0% (areas under curve = 0.811 and 0.797) in the training and testing datasets, respectively. Our findings demonstrate that radiomics can be a novel strategy for fully utilizing rs-fMRI information to distinguish ADHD from healthy controls. The rs-fMRI-based radiomics features have the potential to be neuroimaging biomarkers for ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Espectroscopía de Resonancia MagnéticaRESUMEN
BACKGROUND: Clinical and etiological varieties remain major obstacles to decompose heterogeneity in autism spectrum disorders (ASD). Recently, neuroimaging raised new hope to identify neurosubtypes of ASD for further understanding the biological mechanisms behind the disorder. METHODS: In this study, brain structural MRI data and clinical measures of 221 male subjects with ASD and 257 healthy controls were selected from 7 independent sites from the Autism Brain Image Data Exchange database (ABIDE). Heterogeneity through discriminative analysis (HYDRA), a recently-proposed semi-supervised clustering method was utilized to divide individuals with ASD into several neurosubtypes by regional volumetric measures of gray matter, white matter, and cerebrospinal fluid. Voxel-wise volume, clinical measures, dynamic resting-state functional magnetic resonance imaging (R-fMRI) measures among different neurosubtypes of ASD were explored. In addition, support vector machine (SVM) model was applied to test whether the neurosubtyping of ASD could improve diagnostic accuracy of ASD. RESULTS: Two neurosubtypes of ASD with different voxel-wise volumetric patterns were revealed. The full-scale intelligence quotient (IQ), verbal IQ, Autism Diagnostic Observation Schedule (ADOS) total scores and ADOS severity scores were significantly different between the two neurosubtypes, the total intracranial volume was correlated with performance IQ in Subtype 1 and was correlated with ADOS communication score and ADOS social score in Subtype 2. Compared with Subtype 2, Subtype 1 showed lower dynamic R-fMRI measures, lower dynamic functional architecture stability, higher mean and lower standard deviation (SD) of concordance among dynamic R-fMRI measures in cerebellum. In addition, classification accuracies between ASD neurosubtypes and healthy controls were significantly improved compared with classification accuracy between entire ASD group and healthy controls. LIMITATIONS: The present study excluded female subjects and left-handed subjects, which limited the ability to investigate the associations between these factors and the heterogeneity of ASD. CONCLUSIONS: The two distinct neuroanatomical subtypes of ASD validated by other data modalities not only adds reliability of the result, but also bridges from brain phenomenology to clinical behavior. The current neurosubtypes of ASD could facilitate understanding the neuropathology of this disorder and could be potentially used to improve clinical decision-making process and optimize treatment.