RESUMEN
Photocatalytic H2O2 production is a green and sustainable route, but far from meeting the increasing demands of industrialization due to the rapid recombination of the photogenerated charge carriers and the sluggish reaction kinetics. Effective strategies for precisely regulating the photogenerated carrier behavior and catalytic activity to construct high-performance photocatalysts are urgently needed. Herein, a nitrogen-site engineering strategy, implying elaborately tuning the species and densities of nitrogen atoms, is applied for H2O2 photogeneration performance regulation. Different nitrogen heterocycles, such as pyridine, pyrimidine, and triazine units, are polymerized with trithiophene units, and five covalent organic frameworks (COFs) with distinct nitrogen species and densities on the skeletons are obtained. Fascinatingly, they photocatalyzed H2O2 production via dominated two-electron O2 reduction processes, including O2-O2 â¢â-H2O2 and O2-O2 â¢â-O2 1-H2O2 dual pathways. Just in the air and pure water, the multicomponent TTA-TF-COF with the maximum nitrogen densities triazine nitrogen densities exhibited the highest H2O2 production rate of 3343 µmol g-1 h-1, higher than most of other reported COFs. The theoretical calculation revealed the higher activity is due to the easy formation of O2 â¢â and O2 1 in different catalytic process. This study gives a new insight into designing photocatalysis at atomic level.
RESUMEN
The tunable pore walls and skeletons render covalent organic frameworks (COFs) as promising absorbents for gold (Au) ion. However, most of these COFs suffered from low surface areas hindering binding sites exposed and weak binding interaction resulting in sluggish kinetic performance. In this study, COFs have been constructed with synergistic linker and linkage for high-efficiency Au capture. The designed COFs (PYTA-PZDH-COF and PYTA-BPDH-COF) with pyrazine or bipyridine as linkers showed high surface areas of 1692 and 2076 m2 gâ1, providing high exposed surface areas for Au capture. In addition, the Lewis basic nitrogen atoms from the linkers and linkages are easily hydronium, which enabled to fast trap Au via coulomb force. The PYTA-PZDH-COF and PYTA-BPDH-COF showed maximum Au capture capacities of 2314 and 1810 mg g-1, higher than other reported COFs. More importantly, PYTA-PZDH-COF are capable of rapid adsorption kinetics with achieving 95% of maximum binding capacity in 10 min. The theoretical calculation revealed that the nitrogen atoms in linkers and linkages from both COFs are simultaneously hydronium, and then the protonated PYTA-PZDH-COF are more easily binding the AuCl4 â, further accelerating the binding process. This study gives the a new insight to design COFs for ion capture.
RESUMEN
The utilization of catalysts comprising metal nanoparticle has been beneficial for enhancing the performance of oxygen reduction reaction (ORR). However, the inadequate intrinsic activity of these catalysts still presents a significant challenge, limiting their overall effectiveness. This issue can be addressed by introducing single atoms, which can create a synergistic effect with the nanoparticles to catalyse and thereby improve performance. Nevertheless, the synergistic catalysis of nanoparticles and single atoms is still under investigation. In this study, we fabricated a core-shell structured carbon framework incorporating Fe single atoms and Bi nanoparticles through the pyrolysis of COF and MOF core-shell structures. Introducing Fe single atoms into ZIF-8, with Fe-ZIF-8 as the core and Bi-containing COF as the shell, resulted in higher ORR activity. The catalyst exhibited a half-wave potential of 0.867â V and a high current density of 6.68â mAâ cm-2 in 0.1â M KOH, which were comparable to those of Pt/C equivalent. This study provides new research concepts for exploring the application of single atoms and nanoparticles in catalytic oxygen reduction reactions through synergistic effects.
RESUMEN
To achieve high-efficiency catalysts for CO2 reduction reaction, various catalytic metal centres and linker molecules have been assembled into covalent organic frameworks. The amine-linkages enhance the binding ability of CO2 molecules, and the ionic frameworks enable to improve the electronic conductivity and the charge transfer along the frameworks. However, directly synthesis of covalent organic frameworks with amine-linkages and ionic frameworks is hardly achieved due to the electrostatic repulsion and predicament for the strength of the linkage. Herein, we demonstrate covalent organic frameworks for CO2 reduction reaction by modulating the linkers and linkages of the template covalent organic framework to build the correlation between the catalytic performance and the structures of covalent organic frameworks. Through the double modifications, the CO2 binding ability and the electronic states are well tuned, resulting in controllable activity and selectivity for CO2 reduction reaction. Notably, the dual-functional covalent organic framework achieves high selectivity with a maximum CO Faradaic efficiency of 97.32% and the turnover frequencies value of 9922.68 h-1, which are higher than those of the base covalent organic framework and the single-modified covalent organic frameworks. Moreover, the theoretical calculations further reveal that the higher activity is attributed to the easier formation of immediate *CO from COOH*. This study provides insights into developing covalent organic frameworks for CO2 reduction reaction.
RESUMEN
Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100-350 °C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore, a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here, we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid, which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10-2 S cm-1 at 180 °C and a reliable conductivity stability in 200 h at 160 °C. The PVC-P4VP membrane electrode is covered by an IrO2 anode, and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100-180 °C but also the stable WE stability at 180 °C.
RESUMEN
BACKGROUND: Sepsis is commonly acute and critical illness with high morbidity and high mortality, and requires timely diagnosis and treatment. Septic patients had elevated serum H-FABP levels, which may correlate with disease severity and mortality. However, previous studies showed that the association between H-FABP and mortality during the sepsis remains unclear. Thus, we performed a study to analyze this relationship. METHODS: The electronic databases such as Cochrane Library, PubMed, Embase, Web of Science, Cochrane Clinical Trials Database, Wanfang Database, and China National knowledge Infrastructure (CNKI) were systematically searched to determine the qualified clinical trials. The study language is limited to English or Chinese. The 2 authors used Cochrane Risk of Bias Tool v.2.0 to independently check the quality of papers and extract relevant data. Comprehensive analysis of data extracted in the research using appropriate statistical methods. RESULTS: Evaluation of the relationship between the prognosis of patients with sepsis and serum H-FABP is the result of this study. CONCLUSION: The analysis results of this study can infer that H-FABP may be an independent risk factor for the prognosis of patients with sepsis. It is also helpful for clinical workers to make early evaluation and early treatment of patients with sepsis. ETHICS AND DISSEMINATION: The conclusions of this meta-analysis study are based on the published evidence. Therefore, moral recognition is unnecessary. OSF REGISTRATION NUMBER: DOI: 10.17605/ OSF.IO / 2V4HN.(https://osf.io/2v4hn/).
Asunto(s)
Proteína 3 de Unión a Ácidos Grasos/sangre , Sepsis/sangre , Biomarcadores/sangre , Humanos , Metaanálisis como Asunto , Pronóstico , Revisiones Sistemáticas como AsuntoRESUMEN
We demonstrate the nearly quantitative conversion of methanol to methyl formate (MF) with a reliable durability on the reduced-graphene-oxide-confined VTiOx nanoparticles (rGO@VTiO). The rGO@VTiO exhibits superior low-temperature reactivity than the rGO-free VTiO, and the MF yield of 98.8% is even comparable with the noble metal catalysts. Both experiments and simulations demonstrate that the ultrathin rGO shell significantly impacts the shell/core interfacial electronic structure and the surface chemistry of the resultant catalysts, leading to remarkable reactivity in methanol to MF. rGO enhances the dispersion and loading rates of active monomeric/oligomeric VOx. In particular, the electron migration between the rGO shell and oxides core reinforces the acidity of rGO@VTiO in the absence of sulfate acidic sites. Moreover, both in situ NAP-XPS and DRIFTS investigations suggest that the lattice oxygen was involved in the oxidation of methanol and the MF was formed via the hemiacetal mechanism.
RESUMEN
The poor mechanical strength of graphene oxide (GO) membranes, caused by the weak interlamellar interactions, poses a critical challenge for any practical application. In addition, intrinsic but large-sized 2D channels of stacked GO membranes lead to low selectivity for small molecules. To address the mechanical strength and 2D channel size control, thiourea covalent-linked graphene oxide framework (TU-GOF) membranes on porous ceramics are developed through a facile hydrothermal self-assembly synthesis. With this strategy, thiourea-bridged GO laminates periodically through the dehydration condensation reactions via NH2 and/or SH with OCOH as well as the nucleophilic addition reactions of NH2 to COC, leading to narrowed and structurally well-defined 2D channels due to the small dimension of the covalent TU-link and the deoxygenated processes. The resultant TU-GOF/ceramic composite membranes feature excellent sieving capabilities for small species, leading to high hydrogen permselectivities and nearly complete rejections for methanol and small ions in gas, solvent, and saline water separations. Moreover, the covalent bonding formed at the GO/support and GO/GO interfaces endows the composite membrane with significantly enhanced stability.
RESUMEN
Supported Pt catalyst has been intensively investigated for formaldehyde elimination owing to its superior reactivity at room temperature (RT). However, the high Pt content is challenging because of its high cost. Herein, we report PbO-supported Pt catalysts with only 0.1 wt % Pt, which can achieve complete conversion of formaldehyde and reliable stability at RT under demanding conditions. Both experiments and simulations demonstrate that PbO interacts strongly with the Pt species, resulting in tight Pb-O-Pt bonding at the metal/support interface and concomitant activation of the surface lattice oxygen of the support. Moreover, PbO exhibits an extremely high capacity of formaldehyde capture through methylene glycol chemisorption rather than the common hydroxyl-associated adsorption, presenting a different reaction mechanism because the active surface lattice oxygen in the vicinity of Pt species offers improved reactivity. This work provides a valuable example for the design of an efficient catalyst for formaldehyde and potentially oxidation of other carbohydrates.
RESUMEN
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a complication caused by pulmonary and/or external factors. In this study, we investigated the protective mechanisms of glabridin in lipopolysaccharide (LPS) induced ARDS in rats. RESULTS: GLA treatment at dose of 30 mg/kg decreased LPS-induced lung W/D ratio and alleviated evident lung histopathological changes. Expressions of TNF-α and IL-18 were suppressed by GLA in plasma. The levels of SPA, MDA and NO in lung were down-regulated significantly in groups administrated with GLA. While the SOD level increased after GLA administration. Additionally, the attenuation of inflammatory responses by GLA was closely associated with p38MAPK/ERK pathway, and the expressions of protein p-p38MAPK and pERK were inhibited by GLA in LPS-induced ARDS rats. MATERIALS AND METHODS: Sixty-four Wistar rats were randomly assigned into control group, Glabridin (GLA) alone group, LPS groups (6 h, 12 h, 24 h), GLA with LPS groups (6 h, 12 h, 24 h). ARDS was induced in rats by intraperitoneal administration of LPS (10 mg/kg). The degree of lung edema was evaluated by calculating the wet/dry weight ratio. The levels of inflammatory mediators, tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were assayed by enzyme-linked immunosorbent assay (ELISA). Surfactant protein A (SPA), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) were analyzed. Pathological changes of lung tissues were observed by H&E staining. The protein expression of p38MAPK and ERK was detected using immunohistochemical techniques. Lung phosphorylated p38MAPK (p-p38MAPK) and pERK protein expression changes were detected by Western blotting. CONCLUSIONS: Glabridin significantly ameliorated the lung injury induced by LPS in rats via the inhibition of p38MAPK and ERK signaling pathway, antioxidant effect and reducing inflammation.
Asunto(s)
Isoflavonas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fenoles/farmacología , Síndrome de Dificultad Respiratoria/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/patología , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Lipopolisacáridos/toxicidad , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/etiologíaRESUMEN
To separate small molecules/species, it's crucial but still challenging to narrow the 2D-interspacing of graphene oxide (GO) membranes without damaging the membrane. Here the fast deposition of ultrathin, defect-free and robust GO layers is realized on porous stainless steel hollow fibers (PSSHFs) by a facile and practical electrophoresis deposition (ED) method. In this approach, oxygen-containing groups of GO are selectively reduced, leading to a controlled decrease of the 2D channels of stacked GO layers. The resultant ED-GO@PSSHF composite membranes featured a sharp cutoff between C2 (ethane and ethene) and C3 (propane and propene) hydrocarbons and exhibited nearly complete rejections for the smallest alcohol and ion in aqueous solutions. This demonstrates the versatility of GO based membranes for the precise separation of various types of mixtures. At the same time, a robust mechanical strength of the ED-GO@PSSHF membrane is also achieved due to the enhanced interaction at GO/support and GO/GO interfaces.Producing graphene oxide membranes with narrow channels is desirable for small molecule separations, but methods to narrow the 2D spacing typically result in membrane damage. Here the authors exploit electrophoresis-deposition to prepare GO membranes that are reduced in situ, leading to narrow and uniform 2D channels.