RESUMEN
A novel endophytic strain, designated YIM B02564T, was isolated from the root of Paris polyphylla Smith var. yunnanensis obtained from Yunnan Province, southwest China. By using a polyphasic approach, cells of the strain were characterized as facultative anaerobic, Gram-positive and rod-shaped. The growth conditions of the strain were found to occur at 20-55 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.0). Strain YIM B02564T can tolerate 2% NaCl concentration. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM B02564T belonged to the genus Neobacillus and the 16S rRNA gene sequence similarity values of strain YIM B02564T to the type strains of members of this genus ranged from 95.6 to 97.8%. The DNA G+C content of strain YIM B02564T calculated from the whole genome sequence was 41.6 mol%. Values of the ANI and the dDDH between strain YIM B02564T and its closely related Neobacillus species were below 77.9% and 21.5%. Strain YIM B02564T contained MK-7 as the major menaquinone, iso-C15:0 and anteiso-C15:0 as the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and four unidentified lipids. It contained meso-diaminopimelic acid in the cell-wall peptidoglycan. On the basis of polyphasic analysis, strain YIM B02564T could be differentiated genotypically and phenotypically from recognized species of the genus Neobacillus. The isolate therefore represents a novel species, for which the name Neobacillus paridis is proposed. The type strain is YIM B02564T (= JCM 34668T = CGMCC 1.18655T).
Asunto(s)
Endófitos , Liliaceae , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Endófitos/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
A Gram-negative, facultative anaerobic bacterial strain, designated YIM B02556T, was isolated from the root of Paris polyphylla Smith var. yunnanensis collected from Yunnan Province, southwest China. By using a polyphasic approach, its taxonomic position was investigated. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM B02556T belonged to the genus Azospirillum and the 16S rRNA gene sequence similarity values of strain YIM B02556T to the type strains of members of this genus ranged from 94.9 to 98.3%. Overall genome relatedness index (OGRI) analysis estimated based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between YIM B02556T and other Azospirillum species type strains were <90.8% and <37.8%, lower than the limit of species circumscription. Cells of the strain were characterized as oxidase- and catalase-positive, with motility provided by flagella. The growth conditions of the strain were found to occur at 20-40 °C (optimum, 35 °C), and pH 6.0-9.5 (optimum, pH 7.5). Strain YIM B02556T can tolerate 2% NaCl concentration. Strain YIM B02556T contained Q-10 as the major ubiquinone. The major fatty acids were C18:1 ω7c and summed feature three (C16:1 ω7c and/or C16:1 ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Based on polyphasic analysis, strain YIM B02556T could be differentiated genotypically and phenotypically from recognized species of the genus Azospirillum. Therefore, the isolate represents a novel species, for which the name Azospirillum endophyticum is proposed. The type strain is YIM B02556T (=JCM 34631T=CGMCC 1.18654T).
Asunto(s)
Azospirillum , ARN Ribosómico 16S/genética , Azospirillum/genética , Filogenia , Endófitos/genética , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Fosfolípidos/análisis , China , Ácidos Grasos/análisisRESUMEN
A novel endophytic actinobacterium, designated as strain YIM B02568T, was isolated from the root of Paris polyphylla Smith var. Yunnanensis obtained from Yunnan Province, southwest China. Strain YIM B02568T was characterized using a polyphasic approach. Phylogenetic analysis indicated that this isolate belonged to the genus Janibacter. The 16S rRNA gene sequence similarity values of strain YIM B02568T to the type strains of members of this genus ranged from 95.8 to 98.6%. However, overall genome relatedness indices were significantly lower than the widely accepted species-defined threshold. The cell wall of strain YIM B02568T contained meso-diaminopimelic acid. The major menaquinone was MK-8(H4). The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylinositol. The major cellular fatty acids were comprised of iso-C16:0 and C18:1 ω9c. The DNA G + C content was 71.6 mol%. Based on the data from the polyphasic studies, we propose that strain YIM B02568T represents a novel species within the genus Janibacter, Janibacter endophyticus sp. nov. The type strain is YIM B02568T (= JCM 34639T = CGMCC 1.18658T).
Asunto(s)
Liliaceae , Fosfolípidos , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Structural magnetic resonance imaging (sMRI) studies have shown atypicalities in structural brain changes in individuals with autism spectrum disorder (ASD), while a noticeable discrepancy in their results indicates the necessity of conducting further researches. METHODS: The current study investigated the atypical structural brain features of autistic individuals who aged 6-30 years old. A total of 52 autistic individuals and 50 age-, gender-, and intelligence quotient (IQ)-matched typically developing (TD) individuals were included in this study, and were assigned into three based cohorts: childhood (6-12 years old), adolescence (13-18 years old), and adulthood (19-30 years old). Analyses of whole-brain volume and voxel-based morphometry (VBM) on the sMRI data were conducted. RESULTS: No significant difference was found in the volumes of whole-brain, gray matter, and white matter between the autism and TD groups in the three age-based cohorts. For VBM analyses, the volumes of gray matter in the right superior temporal gyrus and right inferior parietal lobule in the autism group (6-12 years old) were smaller than those in the TD group; the gray matter volume in the left inferior parietal lobule in the autism group (13-18 years old) was larger than that in the TD group; the gray matter volume in the right middle occipital gyrus in the autism group (19-30 years old) was larger than that in the TD group, and the gray matter volume in the left posterior cingulate gyrus in the autism group was smaller than that in the TD group. CONCLUSION: Autistic individuals showed different atypical regional gray matter volumetric changes in childhood, adolescence, and adulthood compared to their TD peers, indicating that it is essential to consider developmental stages of the brain when exploring brain structural atypicalities in autism.
RESUMEN
Background: Autism spectrum disorder is characterized by atypical developmental changes during brain maturation, but regional brain functional changes that occur with age and across different frequency bands are unknown. Therefore, the current study aimed to explore potential age and frequency band-related changes in the regional brain activities in autism. Methods: A total of 65 participants who met the DSM-IV criteria for autistic disorder and 55 typically developed (TD) participants (both age 6-30 years) were recruited in the current study. The two groups were matched in age (t=-1.314, P=0.191) and gender (χ2=2.760, P=0.097). The amplitude of low-frequency fluctuations (ALFF) was employed to explore the effect of development on spontaneous brain activity in individuals with autism and in TD participants across slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), and slow-3 (0.073-0.1 Hz) frequency bands. The diagnosis-by-age interaction effect in the whole brain voxels in autism and TD groups was investigated. Results: Autism individuals showed significantly higher ALFF in the dorsal striatum in childhood (Caudate cluster: t=3.626, P=0.001; Putamen cluster: t=2.839, P=0.007) and remarkably lower ALFF in the dorsal striatum in adulthood (Caudate cluster: t=-2.198, P=0.038; Putamen cluster: t=-2.314, P=0.030) relative to TD, while no significant differences were observed in adolescence (all P>0.05). In addition, abnormal ALFF amplitudes were specific to the slow-4 (0.027-0.073 Hz) frequency band in the clusters above. Conclusions: The current study indicated abnormal development patterns in the spontaneous activity of the dorsal striatum in autism and highlighted the potential role of the slow-4 frequency band in the pathology of autism. Also, the potential brain mechanism of autism was revealed, suggesting that autism-related variations should be investigated in a specific frequency.
RESUMEN
LAY ABSTRACT: Autism spectrum disorder has long been conceptualized as a disorder of "atypical development of functional brain connectivity (which refers to correlations in activity levels of distant brain regions)." However, most of the research has focused on the connectivity between cortical regions, and much remains unknown about the developmental changes of functional connectivity between subcortical and cortical areas in autism spectrum disorder. We used the technique of resting-state functional magnetic resonance imaging to explore the developmental characteristics of intrinsic functional connectivity (functional brain connectivity when people are asked not to do anything) between subcortical and cortical regions in individuals with and without autism spectrum disorder aged 6-30 years. We focused on one important subcortical structure called striatum, which has roles in motor, cognitive, and affective processes. We found that cortico-striatal intrinsic functional connectivities showed opposite developmental trajectories in autism spectrum disorder and typically developing individuals, with connectivity increasing with age in autism spectrum disorder and decreasing or constant in typically developing individuals. We also found significant negative behavioral correlations between those atypical cortico-striatal intrinsic functional connectivities and autistic symptoms, such as social-communication deficits, and restricted/repetitive behaviors and interests. Taken together, this work highlights that the atypical development of cortico-subcortical functional connectivity might be largely involved in the neuropathological mechanisms of autism spectrum disorder.
Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo , Mapeo Encefálico/métodos , Cognición , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagenRESUMEN
Cotton cultivar NuCOTN 33B was planted in isolated pools treated with drought or waterlogging for 7 or 14 d to explore their effects on cotton boll carbohydrate content and its relationship with the biomass accumulation. The results showed that the drought treatment reduced the carbohydrate content of cotton boll shell on middle fruit branches, but had a weak effect on cotton boll shells on lower fruit branches. Soluble sugar, starch and sucrose contents of cotton boll shell on upper fruit branches under the drought condition and on whole plant branches under waterlogging treatment changed similarly, namely, the soluble sugar and starch content increased, while the sucrose content went down firstly and then increased later, which indicated that the exportation of sucrose from boll shell was inhibited and became worse with the increase of waterlogging duration. Compared with the boll shell, the carbohydrate contents of cotton seed were less affected by the drought and waterlogging treatments at the flowering and bolling stage. Under the treatments of drought and 7 d-waterlogging, the biomass accumulation of cotton bolls on the middle fruit branches initiated earlier but lasted less days, and the maximum speed at lower and upper fruit branches reduced, while the treatment of waterlogging for 14 d caused the decline of maximum speed of biomass accumulation of bolls on whole branches. On the other side, the correlation analysis showed the significant positive relationships among the boll biomass, the maximum speed and the contents of soluble sugar and sucrose in the boll shell respectively. In conclusion, the treatment of drought and waterlogging at the flowering and bolling stage retarded the outward transportation of sucrose from cotton bolls, changed the boll biomass accumulation characteristics, and therefore were detected as the important cause of cotton boll total biomass reduction.