Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.144
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(26): 5751-5765.e16, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989313

RESUMEN

The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.


Asunto(s)
Vías Nerviosas , Sodio , Gusto , Animales , Vías Nerviosas/fisiología , Gusto/fisiología , Ratones , Perfilación de la Expresión Génica
2.
Cell ; 185(18): 3375-3389.e21, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998627

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.


Asunto(s)
Lupus Eritematoso Sistémico , Transcriptoma , Humanos , Lupus Eritematoso Sistémico/genética , Análisis de Secuencia de ARN
3.
Immunity ; 57(9): 2173-2190.e8, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39053462

RESUMEN

The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.


Asunto(s)
Envejecimiento , Sistema Nervioso Central , Inmunidad Innata , Ratones Endogámicos C57BL , Microglía , Células Mieloides , Remielinización , Animales , Ratones , Envejecimiento/inmunología , Microglía/inmunología , Microglía/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Sistema Nervioso Central/inmunología , Vaina de Mielina/metabolismo , Vaina de Mielina/inmunología , Epigénesis Genética , Enfermedades Desmielinizantes/inmunología , Modelos Animales de Enfermedad
4.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802024

RESUMEN

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Asunto(s)
Autofagosomas , Proteínas Ubiquitinadas , Ratones , Ratas , Humanos , Animales , Autofagosomas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Acilación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mamíferos/metabolismo
5.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38603796

RESUMEN

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Asunto(s)
Diapausa , Nutrientes , Animales , Femenino , Ratones , Blastocisto/metabolismo , Diapausa/fisiología , Desarrollo Embrionario/fisiología
6.
Nature ; 597(7876): 398-403, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433965

RESUMEN

Somatic mutations that accumulate in normal tissues are associated with ageing and disease1,2. Here we performed a comprehensive genomic analysis of 1,737 morphologically normal tissue biopsies of 9 organs from 5 donors. We found that somatic mutation accumulations and clonal expansions were widespread, although to variable extents, in morphologically normal human tissues. Somatic copy number alterations were rarely detected, except for in tissues from the oesophagus and cardia. Endogenous mutational processes with the SBS1 and SBS5 mutational signatures are ubiquitous among normal tissues, although they exhibit different relative activities. Exogenous mutational processes operate in multiple tissues from the same donor. We reconstructed the spatial somatic clonal architecture with sub-millimetre resolution. In the oesophagus and cardia, macroscopic somatic clones that expanded to hundreds of micrometres were frequently seen, whereas in tissues such as the colon, rectum and duodenum, somatic clones were microscopic in size and evolved independently, possibly restricted by local tissue microstructures. Our study depicts a body map of somatic mutations and clonal expansions from the same individual.


Asunto(s)
Células Clonales/metabolismo , Salud , Mutagénesis , Mutación , Especificidad de Órganos , Anciano de 80 o más Años , Biopsia , Cadáver , Cardias/metabolismo , Proliferación Celular , Células Clonales/citología , Esófago/metabolismo , Femenino , Genómica , Humanos , Masculino
7.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498709

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Nucleotidiltransferasas/genética , ADN , Apoptosis/genética , Homólogo 1 de la Proteína MutL/genética
8.
Genome Res ; 33(8): 1354-1368, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37491077

RESUMEN

The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin from Hi-C data. CTG produces a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understanding of the alterations of genomic structures under different cellular conditions. The genomic structure yielded by CTG serves as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between gene-gene and corresponding protein-protein physical interactions, as well as transcription correlation, is revealed. We also find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space. These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as transcription, gene regulation, and even regulatory networking through affecting protein-protein interactions.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Cromatina/genética , Regulación de la Expresión Génica , Cromosomas , ADN
9.
Plant Cell ; 35(2): 795-807, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36471570

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs most of the carbon fixation on Earth. However, plant Rubisco is an intrinsically inefficient enzyme given its low carboxylation rate, representing a major limitation to photosynthesis. Replacing endogenous plant Rubisco with a faster Rubisco is anticipated to enhance crop photosynthesis and productivity. However, the requirement of chaperones for Rubisco expression and assembly has obstructed the efficient production of functional foreign Rubisco in chloroplasts. Here, we report the engineering of a Form 1A Rubisco from the proteobacterium Halothiobacillus neapolitanus in Escherichia coli and tobacco (Nicotiana tabacum) chloroplasts without any cognate chaperones. The native tobacco gene encoding Rubisco large subunit was genetically replaced with H. neapolitanus Rubisco (HnRubisco) large and small subunit genes. We show that HnRubisco subunits can form functional L8S8 hexadecamers in tobacco chloroplasts at high efficiency, accounting for ∼40% of the wild-type tobacco Rubisco content. The chloroplast-expressed HnRubisco displayed a ∼2-fold greater carboxylation rate and supported a similar autotrophic growth rate of transgenic plants to that of wild-type in air supplemented with 1% CO2. This study represents a step toward the engineering of a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.


Asunto(s)
Nicotiana , Ribulosa-Bifosfato Carboxilasa , Nicotiana/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fotosíntesis/genética , Cloroplastos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Dióxido de Carbono/metabolismo
10.
Plant Cell ; 35(7): 2449-2463, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-36943796

RESUMEN

Cryptophyte plastids originated from a red algal ancestor through secondary endosymbiosis. Cryptophyte photosystem I (PSI) associates with transmembrane alloxanthin-chlorophyll a/c proteins (ACPIs) as light-harvesting complexes (LHCs). Here, we report the structure of the photosynthetic PSI-ACPI supercomplex from the cryptophyte Chroomonas placoidea at 2.7-Å resolution obtained by crygenic electron microscopy. Cryptophyte PSI-ACPI represents a unique PSI-LHCI intermediate in the evolution from red algal to diatom PSI-LHCI. The PSI-ACPI supercomplex is composed of a monomeric PSI core containing 14 subunits, 12 of which originated in red algae, 1 diatom PsaR homolog, and an additional peptide. The PSI core is surrounded by 14 ACPI subunits that form 2 antenna layers: an inner layer with 11 ACPIs surrounding the PSI core and an outer layer containing 3 ACPIs. A pigment-binding subunit that is not present in any other previously characterized PSI-LHCI complexes, ACPI-S, mediates the association and energy transfer between the outer and inner ACPIs. The extensive pigment network of PSI-ACPI ensures efficient light harvesting, energy transfer, and dissipation. Overall, the PSI-LHCI structure identified in this study provides a framework for delineating the mechanisms of energy transfer in cryptophyte PSI-LHCI and for understanding the evolution of photosynthesis in the red lineage, which occurred via secondary endosymbiosis.


Asunto(s)
Diatomeas , Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila A/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Fotosíntesis , Transferencia de Energía , Diatomeas/metabolismo
11.
Circ Res ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355906

RESUMEN

BACKGROUND: Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown. METHODS: Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry. RESULTS: Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and pulmonary function trait. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix, connective tissue development, and lung development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-ß (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3. Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61, a known LRP1 ligand involved in vascular integrity and TIMP3, implicated in extracellular matrix maintenance and also known to interact with LRP1. CONCLUSIONS: Our findings support allele-specific LRP1 gene repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-ß as a potential mechanism of this pleiotropic locus for vascular diseases.

12.
PLoS Genet ; 19(12): e1011084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157491

RESUMEN

mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.


Asunto(s)
Actinas , Proteínas Portadoras , Ratones , Animales , Forminas/genética , Forminas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(44): e2306177120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871210

RESUMEN

Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.


Asunto(s)
Bacillus thuringiensis , Helechos , Insecticidas , Tracheophyta , Animales , Insecticidas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Control Biológico de Vectores , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tracheophyta/metabolismo , Zea mays/metabolismo
14.
J Biol Chem ; 300(1): 105495, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006947

RESUMEN

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Colesterol , Pregnenolona , Humanos , Adrenodoxina/metabolismo , Colesterol/química , Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/química , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/aislamiento & purificación , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Cinética , Pregnenolona/química , Pregnenolona/metabolismo , Unión Proteica , Oxidación-Reducción , Estructura Molecular
15.
J Biol Chem ; 300(3): 105688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280431

RESUMEN

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.


Asunto(s)
Citocromos b5 , Modelos Moleculares , Esteroide 17-alfa-Hidroxilasa , Humanos , Citocromos b5/genética , Citocromos b5/metabolismo , Fluorescencia , Hemo , Proteómica , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/metabolismo , Unión Proteica/genética , Activación Enzimática/genética , Estructura Cuaternaria de Proteína , Mutación
16.
Plant J ; 119(2): 676-688, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683723

RESUMEN

Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin ß family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.


Asunto(s)
Ácido Abscísico , Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Indenos , Estomas de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estomas de Plantas/fisiología , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácido Abscísico/metabolismo , Indenos/metabolismo , Indenos/farmacología , Aminoácidos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Núcleo Celular/metabolismo , Fosfoproteínas Fosfatasas
17.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
18.
Mol Microbiol ; 121(4): 814-830, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38293733

RESUMEN

Mycoplasma belong to the genus Mollicutes and are notable for their small genome sizes (500-1300 kb) and limited biosynthetic capabilities. They exhibit pathogenicity by invading various cell types to survive as intracellular pathogens. Adhesion is a crucial prerequisite for successful invasion and is orchestrated by the interplay between mycoplasma surface adhesins and specific receptors on the host cell membrane. Invasion relies heavily on clathrin- and caveolae-mediated internalization, accompanied by multiple activated kinases, cytoskeletal rearrangement, and a myriad of morphological alterations, such as membrane invagination, nuclear hypertrophy and aggregation, cytoplasmic edema, and vacuolization. Once mycoplasma successfully invade host cells, they establish resilient sanctuaries in vesicles, cytoplasm, perinuclear regions, and the nucleus, wherein specific environmental conditions favor long-term survival. Although lysosomal degradation and autophagy can eliminate most invading mycoplasmas, some viable bacteria can be released into the extracellular environment via exocytosis, a crucial factor in the prolonging infection persistence. This review explores the intricate mechanisms by which mycoplasma invades host cells and perpetuates their elusive survival, with the aim of highlighting the challenge of eradicating this enigmatic bacterium.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma , Humanos , Mycoplasma/metabolismo , Infecciones por Mycoplasma/genética , Infecciones por Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología , Adhesinas Bacterianas/metabolismo , Endocitosis , Autofagia
19.
Genome Res ; 32(1): 44-54, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963662

RESUMEN

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations' stochastic natures. Using a Tn5-transposase-assisted single-cell whole-genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, whereas monosomy X occurred most frequently in over-30-yr-old females. In the monosomy X single cells from individuals with phased genomes and identified X-inactivation ratios in bulk, the inactive X Chromosomes were lost more often than the active ones.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genómica , Aneuploidia , Femenino , Humanos , Linfocitos , Secuenciación Completa del Genoma
20.
PLoS Pathog ; 19(12): e1011868, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117863

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have achieved dominance worldwide and keep on evolving. Convergent evolution of XBB lineages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in variants with substantial growth advantages, such as EG.5, FL.1.5.1, XBB.1.5.70, and HK.3. Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of F456L, while the epistatic shift caused by F456L enables the subsequent convergence of L455F through ACE2 binding enhancement and further immune evasion. L455F and F456L evade RBD-targeting Class 1 public NAbs, reducing the neutralization efficacy of XBB breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F single substitution significantly dampens receptor binding; however, the combination of L455F and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance and ACE2 binding affinity. The perturbed receptor-binding mode leads to the exceptional ACE2 binding and NAb evasion, as revealed by structural analyses. Our results indicate the evolution flexibility contributed by epistasis cannot be underestimated, and the evolution potential of SARS-CoV-2 RBD remains high.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , COVID-19/genética , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda