Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Alzheimers Dement ; 20(8): 5720-5739, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38824621

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.


Asunto(s)
Enfermedad de Alzheimer , Huesos , Encéfalo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Animales
2.
Stem Cells ; 39(4): 467-481, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33459443

RESUMEN

Degeneration of the cartilage endplate (CEP) induces intervertebral disc degeneration (IVDD). Nucleus pulposus cell (NPC) apoptosis is also an important exacerbating factor in IVDD, but the cascade mechanism in IVDD is not clear. We investigated the apoptosis of NPCs and IVDD when stimulated by normal cartilage endplate stem cell (CESC)-derived exosomes (N-Exos) and degenerated CESC-derived exosomes (D-Exos) in vitro and in vivo. Tert-butyl hydroperoxide (TBHP) was used to induce inflammation of CESCs. The bioinformatics differences between N-Exos and D-Exos were analyzed using mass spectrometry, heat map, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. NPC apoptosis was examined using TUNEL staining. The involvement of the AKT and autophagy signaling pathways was investigated using the signaling inhibitor LY294002. Magnetic resonance imaging, Western blotting, and immunofluorescence staining were used to evaluate the therapeutic effects of N-Exos in rats with IVDD. TBHP effectively induced inflammation and the degeneration of CEP in rat. N-Exos were more conducive to autophagy activation than D-Exos. The apoptotic rate of NPCs decreased obviously after treatment with N-Exos compared to D-Exos. N-Exos inhibited NPCs apoptosis and attenuated IVDD in rat via activation of the AKT and autophagy pathways. These results are the first findings to confirm that CEP delayed the progression of IVDD via exosomes. The therapeutic effects of N-Exos on NPC apoptosis inhibition and the slowing of IVDD progression were more effective than D-Exos due to activation of the PI3K/AKT/autophagy pathway, which explained the increase in the incidence of IVDD after inflammation of the CEP.


Asunto(s)
Cartílago/metabolismo , Exosomas/metabolismo , Degeneración del Disco Intervertebral/prevención & control , Desplazamiento del Disco Intervertebral/prevención & control , Disco Intervertebral/metabolismo , Células Madre/metabolismo , Adulto , Anciano , Animales , Autofagia/genética , Cartílago/patología , Estudios de Casos y Controles , Cromonas/farmacología , Exosomas/química , Exosomas/trasplante , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inflamación , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Desplazamiento del Disco Intervertebral/genética , Desplazamiento del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/patología , Región Lumbosacra/patología , Masculino , Persona de Mediana Edad , Morfolinas/farmacología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Células Madre/química , Células Madre/citología , terc-Butilhidroperóxido/antagonistas & inhibidores , terc-Butilhidroperóxido/farmacología
3.
Biochem Biophys Res Commun ; 524(3): 756-763, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32035615

RESUMEN

Intervertebral disc degeneration (IDD) is typically accompanied by a reduced nutrient supply, which is thought to be a contributor to the apoptosis of nucleus pulposus cells (NPCs). Here, we explored whether Forkhead box O3 (FOXO3), a key transcription factor involved in cellular quality control, could protect NPCs against apoptosis under nutrient deficiency. Firstly, we found that FOXO3 knockdown aggravated nutrient deficiency-induced mitochondrial dysfunction, apoptosis and matrix degradation in NPCs. In addition, the siRNA-mediated downregulation of FOXO3 suppressed mitophagy in starved NPCs. However, when we overexpressed FOXO3 in NPCs by lentivirus transfection, the observed detrimental effects induced by nutrient deprivation were significantly reversed by the FOXO3-activated autophagy. Moreover, by analyzing the human NP samples from different age groups as well as degenerated groups, we found that the FOXO3 protein level decreased with aging and degeneration. Together, our data suggest that FOXO3 plays a vital role in disc degeneration and can be a novel therapeutic target for IDD.


Asunto(s)
Apoptosis , Autofagia , Citoprotección , Proteína Forkhead Box O3/metabolismo , Núcleo Pulposo/citología , Animales , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Técnicas de Silenciamiento del Gen , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mitofagia , Núcleo Pulposo/ultraestructura , Ratas , Inanición
4.
Stem Cells ; 37(6): 828-840, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30840341

RESUMEN

Cartilage endplate (CEP) calcification inhibits the transport of metabolites and nutrients in the intervertebral disk and is an important initiating factor of intervertebral disk degeneration. However, the mechanisms governing CEP degeneration have not been thoroughly elucidated. In this study, we established a mouse CEP degeneration model and showed that autophagy insufficiency caused the degeneration of CEP. We found that the inflammatory cytokine tumor necrosis factor-α (TNF-α) increased the level of intracellular reactive oxygen species (ROS) and caused cell senescence and osteogenic differentiation of cartilage endplate stem cells (CESCs), whereas rapamycin-induced autophagy protected CESCs from TNF-α-induced oxidative stress and cell senescence. Furthermore, rapamycin-induced autophagy helped CESCs maintain the chondrogenic properties and inhibited extracellular matrix protease expression and osteogenic differentiation. Further study revealed that autophagy activated by rapamycin or inhibited by chloroquine influenced the expression and nuclear translocation of Nrf2, thereby controlling the expression of antioxidant proteins and the scavenging of ROS. Taken together, the results indicate that rapamycin-induced autophagy enhances Nrf2/Keap1 signaling and promotes the expression of antioxidant proteins, thereby eliminating ROS, alleviating cell senescence, reducing the osteogenic differentiation of CESCs, and ultimately protecting CEPs from chronic inflammation-induced degeneration. Stem Cells 2019;37:828-840.


Asunto(s)
Autofagia/efectos de los fármacos , Degeneración del Disco Intervertebral/prevención & control , Disco Intervertebral/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Sirolimus/farmacología , Células Madre/efectos de los fármacos , Animales , Autofagia/genética , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Cartílago/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Cloroquina/farmacología , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Proteína 1 Asociada A ECH Tipo Kelch/agonistas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología
5.
Biochim Biophys Acta ; 1863(8): 1961-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27163878

RESUMEN

Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration.


Asunto(s)
Quimiocina CXCL12/fisiología , Degeneración del Disco Intervertebral/patología , Células Madre Mesenquimatosas/fisiología , Núcleo Pulposo/patología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores CXCR4/fisiología , Transducción de Señal/fisiología , Agrecanos/biosíntesis , Agrecanos/genética , Bencilaminas , Células Cultivadas , Quimiocina CXCL12/antagonistas & inhibidores , Técnicas de Cocultivo , Colágeno Tipo II/biosíntesis , Colágeno Tipo II/genética , Ciclamas , Módulo de Elasticidad , Compuestos Heterocíclicos/farmacología , Humanos , Técnicas In Vitro , Células Madre Mesenquimatosas/metabolismo , Microscopía de Fuerza Atómica , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores CXCR4/antagonistas & inhibidores
6.
J Cell Mol Med ; 20(5): 769-81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26929182

RESUMEN

Glucose is the major energy supply and a critical metabolite for most cells and is especially important when cell is differentiating. High or low concentrations of glucose enhances or inhibits the osteogenic, chondrogenic and adipogenic differentiation of cell via the insulin, transforming growth factor-ß and peroxisome proliferator-activated receptor γ pathways, among others. New evidence implicates the hexosamine biosynthetic pathway as a mediator of crosstalk between glucose flux, cellular signalling and epigenetic regulation of cell differentiation. Extracellular glucose flux alters intracellular O-GlcNAcylation levels through the hexosamine biosynthetic pathway. Signalling molecules that are important for cell differentiation, including protein kinase C, extracellular signal-regulated kinase, Runx2, CCAAT/enhancer-binding proteins, are modified by O-GlcNAcylation. Thus, O-GlcNAcylation markedly alters cell fate during differentiation via the post-transcriptional modification of proteins. Furthermore, O-GlcNAcylation and phosphorylation show complex interactions during cell differentiation: they can either non-competitively occupy different sites on a substrate or competitively occupy a single site or proximal sites. Therefore, the influence of glucose on cell differentiation via O-GlcNAcylation offers a potential target for controlling tissue homoeostasis and regeneration in ageing and disease. Here, we review recent progress establishing an emerging relationship among glucose concentration, O-GlcNAcylation levels and cell differentiation.


Asunto(s)
Acetilglucosamina/metabolismo , Epigénesis Genética , Glucosa/metabolismo , Células Madre Mesenquimatosas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Acilación , Adipocitos/citología , Adipocitos/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , N-Acetilglucosaminiltransferasas/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transducción de Señal
7.
Cell Signal ; 113: 110960, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977262

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease commonly found in middle-aged and older people. Chondrocytes are the only cells in joint cartilage that are difficult to heal after pyroptosis, and they will aggravate the wear and tear of joint cartilage and affect the progression of OA. Pyroptosis is a novel form of programmed cell death, and the classical pyroptosis pathway is a programmed cell death pattern mediated by inflammatory cysteine protease-1. Activation of NLRP3 leads to activation and cleavage of caspase-1 precursors, which in turn leads to activation and cleavage of GSDMD proteins and the release of proinflammatory factors. Resolvin D1 (RvD1) is a specialized pro-resolving mediator (SPM) derived from omega-3 unsaturated fatty acids that reduces inflammation and catabolic responses in OA chondrocytes. However, it is unclear whether RvD1 promotes OA chondrocyte proliferation and thus joint cartilage repair. Our results show that RvD1 regulates the NLRP3/caspase-1 signaling pathway by inhibiting the expression of caspase-1, promoting the proliferation of OA chondrocytes, promoting the repair of articular cartilage in rats and delaying the progression of osteoarthritis.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Osteoartritis , Humanos , Persona de Mediana Edad , Ratas , Animales , Anciano , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Condrocitos/metabolismo , Caspasa 1/metabolismo , Osteoartritis/metabolismo , Transducción de Señal , Proliferación Celular
8.
ACS Nano ; 18(11): 8360-8382, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457334

RESUMEN

Supramolecular hydrogels emerge as a promising paradigm for sutureless wound management. However, their translation is still challenged by the insufficient mechanical robustness in the context of complex wounds in dynamic tissues. Herein, we report a tissue-adhesive supramolecular hydrogel membrane based on biocompatible precursors for dressing wounds in highly dynamic tissues, featuring robust mechanical resilience through programmable strain-adaptive entanglement among microdomains. Specifically, the hydrogels are synthesized by incorporating a long-chain polyurethane segment into a Schiff base-ligated short-chain oxidized cellulose/quaternized chitosan network via acylhydrazone bonding, which readily establishes interpenetrating entangled microdomains in dynamic cross-linked hydrogel matrices to enhance their tear and fatigue resistance against extreme mechanical stresses. After being placed onto dynamic tissues, the hydrogel dressing could efficiently absorb blood to achieve rapid hemostasis. Moreover, metal ions released from ruptured erythrocytes could be scavenged by the Schiff base linkers to form additional ionic bonds, which would trigger the cross-linking of the short-chain components and establish abundant crystalline microdomains, eventually leading to the in situ stiffening of the hydrogels to endure heavy mechanical loads. Benefiting from its hemostatic capacity and strain adaptable mechanical performance, this hydrogel wound dressing shows promise for the clinical management of various traumatic wounds.


Asunto(s)
Quitosano , Hemostáticos , Hidrogeles , Bases de Schiff , Hemostasis , Antibacterianos
9.
Bone Res ; 12(1): 53, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242551

RESUMEN

Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional Spp1 knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.


Asunto(s)
Inflamasomas , Degeneración del Disco Intervertebral , Macrófagos , Ratones Noqueados , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Osteopontina , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Cartílago/patología , Cartílago/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Inflamasomas/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Macrófagos/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Osteopontina/metabolismo , Osteopontina/deficiencia , Osteopontina/genética
10.
Acta Biomater ; 169: 289-305, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544392

RESUMEN

Immunotherapy is an emerging antitumor modality with high specificity and persistence, but its application for resected tumor treatment is impeded by the low availability of tumor-specific antigens and strong immunosuppression in the wound margin. Here a nanoengineered hydrogel is developed for eliciting robust cooperative ferroptosis-immunotherapeutic effect on resected tumors. Specifically, ß-cyclodextrin (ß-CD) is first grafted onto oxidized sodium alginate (OSA) through Schiff base ligation, which could trap cRGD-modified redox-responsive Withaferin prodrugs (WA-cRGD) to obtain the hydrogel building blocks (Gel@WA-cRGD). Under Ca2+-mediated crosslinking, Gel@WA-cRGD rapidly forms physiologically stable hydrogels, of which the porous network is used to deliver programmed cell death ligand 1 antibodies (aPD-L1). After injection into the post-surgical wound cavity, the ß-CD-entrapped WA-cRGD is detached by the local acidity and specifically internalized by residual tumor cells to trigger ferroptosis, thus releasing abundant damage-associated molecular patterns (DAMPs) and tumor-derived antigens for activating the antigen-presenting cell-mediated cross-presentation and downstream cytotoxic T cell (CTL)-mediated antitumor responses. Furthermore, aPD-L1 could block PD-1/PD-L1 interaction and enhance the effector function of CTLs to overcome tumor cell-mediated immunosuppression. This cooperative hydrogel-based antitumor strategy for ferroptosis-immunotherapy may serve as a generally-applicable approach for postoperative tumor management. STATEMENT OF SIGNIFICANCE: To overcome the immunosuppressive microenvironment in resected solid tumors for enhanced patient survival, here we report a nanoengineered hydrogel incorporated supramolecular redox-activatable Withaferin prodrug and PD-L1 antibody, which could elicit robust cooperative ferroptosis-immunotherapeutic effect against residual tumor cells in the surgical bed to prevent tumor relapse, thus offering a generally-applicable approach for postoperative tumor management.


Asunto(s)
Ferroptosis , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Antígeno B7-H1 , Hidrogeles/farmacología , Neoplasia Residual , Recurrencia Local de Neoplasia , Inmunoterapia , Antígenos de Neoplasias , Microambiente Tumoral , Línea Celular Tumoral
11.
J Am Chem Soc ; 134(24): 10251-8, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22612449

RESUMEN

The catalytic performances of supported gold nanoparticles depend critically on the nature of support. Here, we report the first evidence of strong metal-support interactions (SMSI) between gold nanoparticles and ZnO nanorods based on results of structural and spectroscopic characterization. The catalyst shows encapsulation of gold nanoparticles by ZnO and the electron transfer between gold and the support. Detailed characterizations of the interaction between Au nanoparticles and ZnO were done with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and FTIR study of adsorbed CO. The significance of the SMSI effect is further investigated by probing the efficiency of CO oxidation over the Au/ZnO-nanorod. In contrast to the classical reductive SMSI in the TiO(2) supported group VIII metals which appears after high temperature reduction in H(2) with electron transfer from the support to metals, the oxidative SMSI in Au/ZnO-nanorod system gives oxygen-induced burial and electron transfer from gold to support. In CO oxidation, we found that the oxidative SMSI state is associated with positively charged gold nanoparticles with strong effect on its catalytic activity before and after encapsulation. The oxidative SMSI can be reversed by hydrogen treatment to induce AuZn alloy formation, de-encapsulation, and electron transfer from support to Au. Our discovery of the SMSI effects in Au/ZnO nanorods gives new understandings of the interaction between gold and support and provides new way to control the interaction between gold and the support as well as catalytic activity.

12.
Chemistry ; 18(50): 16104-13, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23080346

RESUMEN

Mesocrystals of ZnO were synthesized hydrothermally by using gum arabic as a structure-directing agent. Their hierarchical structure has a unique twin-brush form consisting of vertically aligned nanorods in a single-crystal-like porous form. The formation mechanism of the twin-brush ZnO was investigated by quenching a series of samples at different times and examining them by TEM, SEM, and XRD. The alignment of ZnO crystal units can be modulated by adding simple salts such as KCl to change the units from nanorods to nanoplates. This can be explained by screening the dipolar force of the polar crystal. Local cathodoluminescence of twin-brush ZnO was used to follow the local structure changes.

13.
J Orthop Surg (Hong Kong) ; 30(1): 10225536221091846, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35410526

RESUMEN

PURPOSE: To evaluate the vertebral bone mineral density and the value of stand-alone oblique lumbar interbody fusion (SA OLIF) for the management of single-level adjacent segment disease (ASD) and primary lumbar degenerative diseases. PATIENTS AND METHODS: Seventy-eight patients undergoing single-level SA OLIF was divided into index surgery group (n = 36) or revision surgery group (n = 42) at single center. The vertebral body Hounsfield units (HU) value was measured to assess bone mineral density of operated level by the preoperative CT. The following data were retrospectively collected and compared between the two groups: demographic, surgical data, clinical results, and complications. RESULTS: No differences were found between the two groups in surgical data. The fusion segment HU values in the revision group were significantly higher than that in the index group (147.4 ± 35.3 vs 129.2 ± 38.4 p = .033). There were significant differences while comparing fusion segment HU values to L1-L4 horizontal plane (147.4 ± 35.3 vs 126.1 ± 28.4, p = .000) and L1 (147.4 ± 35.3 vs 126.8 ± 26.2, p = .000) in revision group, meanwhile, no statistically significant difference was observed in index group (p > .05). The cage subsidence was observed in the revision group (n = 2) and index group (n = 9) (p = .045). The patients with cage subsidence had significantly lower vertebral HU values. CONCLUSION: SA OLIF is valid alternative to the traditional posterior approach in the management of ASD with good clinical outcomes at short-term follow-up. Increased HU values of fusion segment may play a role in the management of ASD by SA OLIF.


Asunto(s)
Densidad Ósea , Fusión Vertebral , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Reoperación/métodos , Estudios Retrospectivos , Fusión Vertebral/métodos
14.
Front Oncol ; 12: 801300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982951

RESUMEN

Background: Despite advances in prognosis and treatment of lung adenocarcinoma (LADC), a notable non-small cell lung cancer subtype, patient outcomes are still unsatisfactory. New insight on novel therapeutic strategies for LADC may be gained from a more comprehensive understanding of cancer progression mechanisms. Such strategies could reduce the mortality and morbidity of patients with LADC. In our previous study, we performed cDNA microarray screening and found an inverse relationship between inhibitor of DNA binding 2 (Id2) expression levels and the invasiveness of LADC cells. Materials and Methods: To identify the functional roles of Id2 and its action mechanisms in LADC progression, we successfully established several Id2-overexpressing and Id2-silenced LADC cell clones. Subsequently, we examined in vitro the effects exerted by Id2 on cell morphology, proliferation, colony formation, invasive, and migratory activities and examined in vivo those exerted by Id2 on cell metastasis. The mechanisms underlying the action of Id2 were investigated using RNA-seq and pathway analyses. Furthermore, the correlations of Id2 with its target gene expression and clinical outcomes were calculated. Results: Our data revealed that Id2 overexpression could inhibit LADC cells' migratory, invasive, proliferation, and colony formation capabilities. Silencing Id2 expression in LADC cells reversed the aforementioned inhibitory effects, and knockdown of Id2 increased LADC cells' metastatic abilities in vivo. Bioinformatics analysis revealed that these effects of Id2 on cancer progression might be regulated by focal adhesion kinase (FAK) signaling and CD44/Twist expression. Furthermore, in online clinical database analysis, patients with LADC whose Id2 expression levels were high and FAK/Twist expression levels were low had superior clinical outcomes.Conclusion: Our data indicate that the Id2 gene may act as a metastasis suppressor and provide new insights into LADC progression and therapy.

15.
Bioact Mater ; 15: 29-43, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35386360

RESUMEN

Low back pain, mainly caused by intervertebral disc degeneration (IVDD), is a common health problem; however, current surgical treatments are less than satisfactory. Thus, it is essential to develop novel non-invasive surgical methods for IVDD treatment. Here, we describe a therapeutic strategy to inhibit IVDD by injecting hydrogels modified with the extracellular matrix of costal cartilage (ECM-Gels) that are loaded with cartilage endplate stem cells (CESCs). After loaded with CESCs overexpressing Sphk2 (Lenti-Sphk2-CESCs) and injected near the cartilage endplate (CEP) of rats in vivo, ECM-Gels produced Sphk2-engineered exosomes (Lenti-Sphk2-Exos). These exosomes penetrated the annulus fibrosus (AF) and transported Sphk2 into the nucleus pulposus cells (NPCs). Sphk2 activated the phosphatidylinositol 3-kinase (PI3K)/p-AKT pathway as well as the intracellular autophagy of NPCs, ultimately ameliorating IVDD. This study provides a novel and efficient non-invasive combinational strategy for IVDD treatment using injectable ECM-Gels loaded with CESCs that express Sphk2 with sustained release of functional exosomes.

16.
Front Cell Dev Biol ; 9: 648201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748142

RESUMEN

Stem cells derived from cartilage endplate (CEP) cells (CESCs) repair intervertebral disc (IVD) injury; however, the mechanism remains unclear. Here, we evaluated whether CESCs could transdifferentiate into nucleus pulposus cells (NPCs) via autocrine exosomes and subsequently inhibit IVD degeneration. Exosomes derived from CESCs (CESC-Exos) were extracted and identified by ultra-high-speed centrifugation and transmission electron microscopy. The effects of exosomes on the invasion, migration, and differentiation of CESCs were assessed. The exosome-activating hypoxia-inducible factor (HIF)-1α/Wnt pathway was investigated using lenti-HIF-1α and Wnt agonists/inhibitors in cells and gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis in normal and degenerated human CEP tissue. The effects of GATA binding protein 4 (GATA4) on transforming growth factor (TGF)-ß expression and on the invasion, migration, and transdifferentiation of CESCs were investigated using lenti-GATA4, TGF-ß agonists, and inhibitors. Additionally, IVD repair was investigated by injecting CESCs overexpressing GATA4 into rats. The results indicated that CESC-Exos promoted the invasion, migration, and differentiation of CESCs by autocrine exosomes via the HIF-1α/Wnt pathway. Additionally, increased HIF-1α enhanced the activation of Wnt signaling and activated GATA4 expression. GATA4 effectively promoted TGF-ß secretion and enhanced the invasion, migration, and transdifferentiation of CESCs into NPCs, resulting in promotion of rat IVD repair. CESCs were also converted into NPCs as endplate degeneration progressed in human samples. Overall, we found that CESC-Exos activated HIF-1α/Wnt signaling via autocrine mechanisms to increase the expression of GATA4 and TGF-ß1, thereby promoting the migration of CESCs into the IVD and the transformation of CESCs into NPCs and inhibiting IVDD.

17.
Stem Cell Res Ther ; 11(1): 33, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973760

RESUMEN

The original article [1] contains an error in Fig. 5 whereby sub-Fig. 5c, d & 5e are mistakenly mixed-up.

18.
Nanoscale ; 11(43): 20741-20753, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31650145

RESUMEN

In this study, short-channel SBA-15 with a platelet morphology (p-SBA-15) is used to support Ni to effectively enhance catalytic activity and CH4 selectivity during CO2 hydrogenation. The use of p-SBA-15 as a support can result in smaller Ni particle sizes than Ni particles on typical SBA-15 supports because p-SBA-15 possesses a larger surface area and a greater ability to provide metal-support interactions. The Ni/p-SBA-15 materials with tiny Ni particles exhibit enhanced catalytic activity toward CO2 hydrogenation and CH4 formation during CO2 hydrogenation compared to the same Ni loading on a SBA-15 support. The presence of metal-support interaction on the Ni/p-SBA-15 catalyst may increase the possibility of abundance of strongly adsorbing sites for CO and CO2, thus resulting in high reaction rates for CO2 and CO hydrogenation. The reaction kinetics, reaction pathway and active sites were studied and correlated to the high catalytic activity for CO2 hydrogenation to form CH4.

19.
Aging (Albany NY) ; 11(18): 7961-7977, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31546235

RESUMEN

Intervertebral disc degeneration (IDD) is recognized as the major contributor to low back pain, which results in disability worldwide and heavy burdens on society and economy. Here we present evidence that the lower level of Nrf2 is closely associated with higher grade of IDD. The apoptosis and senescence of nucleus pulposus cells (NPCs) were exacerbated by Nrf2 knockdown, but suppressed by Nrf2 overexpression under oxidative stress. Based on findings that Kinsenoside could exert multiple pharmacological effects, we found that Kinsenoside rescued the NPC viability under oxidative stress and protected against apoptosis, senescence and mitochondrial dysfunction in a Nrf2-dependent way. Further experiments revealed that Kinsenoside activated a signaling pathway of AKT-ERK1/2-Nrf2 in NPCs. Moreover, in vivo study showed that Kinsenoside ameliorated IDD in a puncture-induced model. Together, the present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of Kinsenoside on Nrf2 activation in NPCs.


Asunto(s)
4-Butirolactona/análogos & derivados , Degeneración del Disco Intervertebral/tratamiento farmacológico , Disco Intervertebral/efectos de los fármacos , Monosacáridos/uso terapéutico , Transducción de Señal/efectos de los fármacos , 4-Butirolactona/farmacología , 4-Butirolactona/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monosacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
20.
Stem Cell Res Ther ; 10(1): 357, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779679

RESUMEN

BACKGROUND: The degenerative disc disease (DDD) is a major cause of low back pain. The physiological low-glucose microenvironment of the cartilage endplate (CEP) is disrupted in DDD. Glucose influences protein O-GlcNAcylation via the hexosamine biosynthetic pathway (HBP), which is the key to stem cell fate. Thiamet-G is an inhibitor of O-GlcNAcase for accumulating O-GlcNAcylated proteins while 6-diazo-5-oxo-L-norleucine (DON) inhibits HBP. Mechanisms of DDD are incompletely understood but include CEP degeneration and calcification. We aimed to identify the molecular mechanisms of glucose in CEP calcification in DDD. METHODS: We assessed normal and degenerated CEP tissues from patients, and the effects of chondrogenesis and osteogenesis of the CEP were determined by western blot and immunohistochemical staining. Cartilage endplate stem cells (CESCs) were induced with low-, normal-, and high-glucose medium for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. CESCs were induced with low-glucose and high-glucose medium with or without Thiamet-G or DON for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. Sox9 and Runx2 O-GlcNAcylation were measured by immunofluorescence. The effects of O-GlcNAcylation on the downstream genes of Sox9 and Runx2 were determined by Q-PCR and western blot. RESULTS: Degenerated CEPs from DDD patients lost chondrogenesis, acquired osteogenesis, and had higher protein O-GlcNAcylation level compared to normal CEPs from LVF patients. CESC chondrogenic differentiation gradually decreased while osteogenic differentiation gradually increased from low- to high-glucose differentiation medium. Furthermore, Thiamet-G promoted CESC osteogenic differentiation and inhibited chondrogenic differentiation in low-glucose differentiation medium; however, DON acted opposite role in high-glucose differentiation medium. Interestingly, we found that Sox9 and Runx2 were O-GlcNAcylated in differentiated CESCs. Finally, O-GlcNAcylation of Sox9 and Runx2 decreased chondrogenesis and increased osteogenesis in CESCs. CONCLUSIONS: Our findings demonstrate the effect of glucose concentration on regulating the chondrogenic and osteogenic differentiation potential of CESCs and provide insight into the mechanism of how glucose concentration regulates Sox9 and Runx2 O-GlcNAcylation to affect the differentiation of CESCs, which may represent a target for CEP degeneration therapy.


Asunto(s)
Cartílago/metabolismo , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Glucosa/farmacología , Placa de Crecimiento/metabolismo , Osteogénesis/efectos de los fármacos , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Adulto , Cartílago/citología , Femenino , Glicosilación , Placa de Crecimiento/citología , Humanos , Masculino , Persona de Mediana Edad , Células Madre/citología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda