Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091468

RESUMEN

Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteínas de la Membrana/metabolismo , ARN Largo no Codificante/genética , Apoptosis/genética , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , China , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Neoplasias/genética
2.
Small ; 20(3): e2305517, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670220

RESUMEN

A novel and sustainable carbon-based material, referred to as hollow porous carbon particles encapsulating multi-wall carbon nanotubes (MWCNTs) (CNTs@HPC), is synthesized for use in supercapacitors. The synthesis process involves utilizing LTA zeolite as a rigid template and dopamine hydrochloride (DA) as the carbon source, along with catalytic decomposition of methane (CDM) to simultaneously produce MWCNTs and COx -free H2 . The findings reveal a distinctive hierarchical porous structure, comprising macropores, mesopores, and micropores, resulting in a total specific surface area (SSA) of 913 m2  g-1 . The optimal CNTs@HPC demonstrates a specific capacitance of 306 F g-1 at a current density of 1 A g-1 . Moreover, this material demonstrates an electric double-layer capacitor (EDLC) that surpasses conventional capabilities by exhibiting additional pseudocapacitance characteristics. These properties are attributed to redox reactions facilitated by the increased charge density resulting from the attraction of ions to nickel oxides, which is made possible by the material's enhanced hydrophilicity. The heightened hydrophilicity can be attributed to the presence of residual silicon-aluminum elements in CNTs@HPC, a direct outcome of the unique synthesis approach involving nickel phyllosilicate in CDM. As a result of this synthesis strategy, the material possesses excellent conductivity, enabling rapid transportation of electrolyte ions and delivering outstanding capacitive performance.

3.
Langmuir ; 40(5): 2465-2486, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265034

RESUMEN

Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.

4.
Nutr J ; 23(1): 33, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459491

RESUMEN

BACKGROUND: The relationship between vitamin D status and mortality among adults with hypertension remains unclear. METHODS: This prospective cohort study involved a sample of 19,500 adults with hypertension who participated in the National Health and Nutrition Examination Survey (NHANES) from 2001 to 2018. We utilized a weighted COX proportional hazard model to assess the association between vitamin D status and mortality. This statistical model calculates hazard ratios (HR) and their corresponding 95% confidence intervals (95% CI). RESULTS: The study indicated that lower serum 25(OH)D concentration was associated with an increased risk of all-cause mortality among individuals with hypertension. Specially. Those with concentrations between 25.0 and 49.9 nmol/L (HR = 1.71, 95%CI = 1.22-2.40) and less than 25.0 nmol/L (HR = 1.97, 95%CI = 1.15-3.39) had higher hazard ratios for all-cause mortality. Individuals with hypertension who took vitamin D supplements had a lower risk of all-cause mortality, but not the risk of CVD mortality (HR 0.75, 95%CI 0.54-1.03), compared to those who did not supplement (HR = 0.76, 95%CI = 0.61-0.94). Subgroup analysis further revealed that vitamin D supplementation was associated with a reduced risk of all-cause mortality among individuals without diabetes (HR = 0.65, 95%CI = 0.52-0.81) and individuals without CVD (HR = 0.75, 95%CI = 0.58-0.97), and a decreased risk of CVD mortality among individuals without diabetes (HR = 0.63, 95%CI = 0.45-0.88) and without CVD (HR = 0.61, 95%CI = 0.40-0.92). Furthermore, higher-dose vitamin D supplementation was also associated with a greater reduction in all-cause mortality among hypertensive individuals, and there was the potential synergistic effect of combining normal-dose calcium and vitamin D supplementation, showing a superior effect on mortality compared to low-dose supplementation in adults with hypertension. CONCLUSIONS: This prospective cohort study demonstrated a significant association between lower serum 25 (OH)D concentration and increased all-cause mortality among adults with hypertension. Furthermore, the study found that vitamin D supplementation had a strong and significantly positive correlation with reduced all-cause and CVD mortality among hypertensive individuals without diabetes or CVD. This positive correlation suggests that vitamin D supplementation could potentially be an effective strategy to reduce the risk of mortality in this specific group of people.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hipertensión , Deficiencia de Vitamina D , Vitamina D/análogos & derivados , Adulto , Humanos , Encuestas Nutricionales , Estudios Prospectivos , Vitaminas , Suplementos Dietéticos
5.
Angew Chem Int Ed Engl ; 63(1): e202315167, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983657

RESUMEN

Mixed-matrix membranes (MMMs) have the potential for energy-efficient gas separation by matching the superior mass transfer and anti-plasticization properties of the fillers with processability and scaling up features of the polymers. However, construction of high-performance MMMs has been prohibited due to low filler-loading and the existence of interfacial defects. Here, high MOF-loaded, i.e., 55 wt %, MMMs are developed by a 'dormancy and double-activation' (DDA) strategy. High MOF precursor concentration suppresses crystallization in the membrane casting solution, realizing molecular level mixing of all components. Then, the polymeric matrix was formed with uniform encapsulation of MOF nutrients. Subsequently, double-activation was employed to induce MOF crystallization: the alkali promotes MOFs nucleation to harvest small porous nanocrystals while excessive ligands activate the metal ions to enhance the MOFs conversion. As such, quasi-semi-continuous mass transfer channels can be formed in the MMMs by the connected MOFs nanocrystals to boost the gas permeability. The optimized MMM shows significantly ameliorated CO2 permeability, i.e., 2841 Barrer, five-fold enhancement compared with pristine polymer membrane, with a good CO2 /N2 selectivity of 36. Besides, the nanosized MOFs intensify their interaction with polymer chains, endowing the MMMs with good anti-plasticization behaviour and stability, which advances practical application of MMMs in carbon capture.

6.
Small ; 19(48): e2304612, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37533398

RESUMEN

Selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) is recognized as one of the most promising reactions for the valorization of biomass. Precise activation of C─O bonds of glycerol molecule is the key step to realize the high yield of catalytic conversion. Here, a Pt-loaded Nb-W composite oxides with crystallographic shear phase for the precise activation and cleavage of secondary C─O (C(2)─O) bonds are first reported. The developed Nb14 W3 O44 with uniform structure possesses arrays of W-O-Nb active sites that totally distinct from individual WOx or NbOx species, which is superior to the adsorption and activation of C(2)─O bonds. The Nb14 W3 O44 support with rich reversible redox couples also promotes the electron feedback ability of Pt and enhances its interaction with Pt nanoparticles, resulting in high activity for H2 dissociation and hydrogenation. All these favorable factors confer the Pt/Nb14 W3 O44 excellent performance for selective hydrogenolysis of glycerol to 1,3-PDO with the yield of 75.2% exceeding the record of 66%, paying the way for the commercial development of biomass conversion. The reported catalysts or approach can also be adopted to create a family of Nb-W metal composite oxides for other catalytic reactions requiring selective C─O bond activation and cleavage.

7.
Angew Chem Int Ed Engl ; 62(23): e202302931, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015013

RESUMEN

Two-dimensional graphene oxide (GO) membranes are gaining popularity as a promising means to address global water scarcity. However, current GO membranes fail to sufficiently exclude angstrom-sized ions from solution. Herein, a de novo "posterior" interfacial polymerization (p-IP) strategy is reported to construct a tailor-made polyamide (PA) network in situ in an ultrathin GO membrane to strengthen size exclusion while imparting a positively charged membrane surface to repel metal ions. The electrostatic repulsion toward metal ions, coupled with the reinforced size exclusion, synergistically drives the high-efficiency metal ion separation through the synthesized positively charged GO framework (PC-GOF) membrane. This dual-mechanism-driven PC-GOF membrane exhibits superior metal ion rejection, anti-fouling ability, good operational stability, and ultra-high permeance (five times that of pristine GO membranes), enabling a sound step towards a sustainable water-energy-food nexus.

8.
Small ; 18(4): e2103561, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34761518

RESUMEN

Cobalt phosphides electrocatalysts have great potential for water splitting, but the unclear active sides hinder the further development of cobalt phosphides. Wherein, three different cobalt phosphides with the same hollow structure morphology (CoP-HS, CoP2 -HS, CoP3 -HS) based on the same sacrificial template of ZIF-67 are prepared. Surprisingly, these cobalt phosphides exhibit similar OER performances but quite different HER performances. The identical OER performance of these CoPx -HS in alkaline solution is attributed to the similar surface reconstruction to CoOOH. CoP-HS exhibits the best catalytic activity for HER among these CoPx -HS in both acidic and alkaline media, originating from the adjusted electronic density of phosphorus to affect absorption-desorption process on H. Moreover, the calculated ΔGH* based on P-sites of CoP-HS follows a quite similar trend with the normalized overpotential and Tafel slope, indicating the important role of P-sites for the HER process. Moreover, CoP-HS displays good performance (cell voltage of 1.67 V at a current density of 50 mA cm-2 ) and high stability in 1 M KOH. For the first time, this work detailly presents the critical role of phosphorus in cobalt-based phosphides for water splitting, which provides the guidance for future investigations on transition metal phosphides from material design to mechanism understanding.

9.
Angew Chem Int Ed Engl ; 61(6): e202110429, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612568

RESUMEN

Piezocatalysis, a newly emerging catalysis technology that relies on the piezopotential and piezoelectric properties of the catalysts, is attracting unprecedented research enthusiasm for applications in energy conversion, organic synthesis, and environmental remediation. Despite the rapid development in the past three years, the mechanism of piezocatalysis is still under debate. A fundamental understanding of the working principles of this technology should enable the future design and optimization of piezocatalysts. Herein, we provide an overview of the two popular theories used to explain the observed piezocatalysis: energy band theory and screening charge effect. A comprehensive discussion and clarification of the differences, relevance, evidence, and contradiction of the two mechanisms are provided. Finally, challenges and perspectives for future mechanistic studies are highlighted. Hopefully, this Review can help readers gain a better understanding of piezocatalysis and enable its application in their own research.

10.
Small ; 17(16): e2004579, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33464724

RESUMEN

The development of novel single atom catalyst (SAC) is highly desirable in organic synthesis to achieve the maximized atomic efficiency. Here, a Co-based SAC on nitrogen-doped graphene (SACo@NG) with high Co content of 4.1 wt% is reported. Various characterization results suggest that the monodispersed Co atoms are coordinated with N atoms to form robust and highly effective catalytic centers to activate peroxymonosulfate (PMS) for organic selective oxidation. The catalytic performance of the SACo@NG/PMS system is conducted on the selective oxidation of benzyl alcohol (BzOH) showing high efficiency with over 90% conversion and benzaldehyde selectivity within 180 min under mild conditions. Both radical and non-radical processes occurred in the selective oxidation of BzOH, but the non-radical oxidation plays the dominant role which is accomplished by the adsorption of BzOH/PMS on the surface of SACo@NG and the subsequent electron transfer through the carbon matrix. This work provides new insights to the preparation of efficient transition metal-based single atom catalysts and their potential applications in PMS mediated selective oxidation of alcohols.

11.
Environ Res ; 202: 111684, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34260960

RESUMEN

A beancurd-derived mesoporous carbon (NSC) was prepared by an environmentally friendly procedure, and then it was investigated as Au@Pd@Pt core-shell catalysts support (Au@Pd@Pt-NSC) for oxygen reduction reaction (ORR). The Au@Pd@Pt-NSC (E1/2 = 0.91 V) has a marginally negative ORR half-wave potential compared with other materials, in particular Pt/C (E1/2 = 0.87 V) and Au@Pd@Pt-C (E1/2 = 0.81 V). The specific and mass activities of the Au@Pd@Pt-NSC were 5 and 13 times higher than the commercial a Pt/C catalyst. After 20000 cycles of rapid durability test, the Au@Pd@Pt-NSC sample showed a loss of just 4.9% compared with the initial ECSA area, which can be attributed to the favorable interaction between Au@Pd@Pt and NSC. These results can be considered of environmental relevance and high potential applicability.


Asunto(s)
Carbono , Oxígeno , Biomasa , Catálisis , Oxidación-Reducción
12.
Environ Res ; 201: 111563, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171375

RESUMEN

An iron-nitrogen-boron-carbon (Fe-N-B-C) bifunctional electrocatalyst was prepared by means of a facile one-step hydrothermal reduction of graphene oxide using dimethylamine borane as doping agent. In addition, hemins were efficiently anchored during doping/reducing process on this modified graphene. The as-prepared Fe-N-B-C electro-catalyst showed enhanced response as regards its potential for reduction of H2O2 and O2. In view of its catalytic activity, this Fe-N-B-C material was tested for the determination of H2O2 with a chronoamperometry method, obtaining a detection limit as low as 0.055 µM, which is better than that of some Hemin-N-C materials. Regarding O2 reduction reaction, a study performed using a rotating disk electrode indicated that this material exhibits a positive onset potential (0.90V vs. RHE), high selectivity (4e- process), high limiting-current density (4.75 mA cm-2) and strong resistance against the crossover-effect from methanol in alkaline medium, making it to be the promising candidate as alternative for commercial Pt/C catalysts. These results could have commercial and environmental relevance and would deserve further complementary investigation.


Asunto(s)
Carbono , Nitrógeno , Boro , Peróxido de Hidrógeno , Hierro , Oxígeno
13.
J Environ Manage ; 297: 113311, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280862

RESUMEN

In the present work, TiO2-graphite-phase-carbon-nitride (TiO2/g-C3N4) was prepared through a hydrothermal method to obtain a new photocatalytic material. This material was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray energy spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Solid-state UV-Vis diffuse reflectance spectrometry (UV-Vis-DRS) and electron paramagnetic resonance (EPR). The synthesized TiO2/g-C3N4 exhibited homogeneous morphology, in which TiO2 nanoparticles were uniformly distributed on the g-C3N4 nanosheets. Regarding its potential use as photocatalytic material in the treatment of mineral processing wastewater, 18% TiO2/g-C3N4 showed superior photodegradation performance than TiO2 and g-C3N4, to give 97.1% degradation rate under 100 min of simulated light irradiation. The experimental results showed that the successful incorporation of TiO2 on g-C3N4 nanosheets enhanced the spectral response range of TiO2/g-C3N4, and the photocatalytic activity was improved. In view of that, it can be considered that this kind of photocatalytic material has a good prospect in the treatment of mineral processing wastewater, which would have clearly environmental relevance.


Asunto(s)
Potasio , Aguas Residuales , Catálisis , Luz , Espectroscopía Infrarroja por Transformada de Fourier , Tionas , Titanio
14.
Small ; 16(14): e1906276, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32130789

RESUMEN

Direct conversion of syngas to dimethyl ether (DME) through the intermediate of methanol allows more efficient DME production in a simpler reactor design relative to the conventional indirect route. Although Cu/ZnO-based multicomponent catalysts are highly active for methanol synthesis in this process, the sintering issue of Cu during the prolonged reaction generally deteriorates their performance. In this work, Cu/ZnO catalysts in a novel octahedron structure are prepared by a two-step pyrolysis of Zn-doped Cu-BTC metal-organic framework (MOF) in N2 and air. The catalyst CZ-350/A, hybrid of MOF-derived Cu/ZnO sample CZ-350 and γ-Al2 O3 for methanol dehydration, displays the best activity for DME formation (7.74% CO conversion and 70.05% DME selectivity) with the lowest deterioration rate over 40 h continuous reaction. Such performance is superior to its counterpart CZ-CP/A made via the conventional coprecipitation method. This is mainly due to the confinement of Cu nanoparticles within the octahedron matrix hindering their migration and aggregation. Besides, partial reduction of ZnO in the activated CZ-350 prompts the formation of Cu+ -O-Zn, further facilitating the DME production with the highest selectivity compared to literature results. The results clearly indicate that Cu and ZnO distribution in the catalyst architecture plays an important role in DME formation.

15.
Langmuir ; 36(33): 9709-9718, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32787058

RESUMEN

A single semiconductor employed into photo(electro)catalysis is not sufficient for charge carrier separation. Designing a multiple heterojunction system is a practical method for photo(electro)catalysis. Herein, novel two-dimensional AgInS2/SnS2/RGO (AISR) photocatalysts with multiple junctions were prepared by a simple hydrothermal method. The synthesized AISR heterojunctions showed superior photoelectrochemical performance and photocatalytic degradation of norfloxacin, with a high degradation rate reaching 95%. More importantly, the toxicity of photocatalytic products decreased within the reaction process. High spatial separation efficiency of photogenerated electron-hole pairs was evidenced by optical and photoelectrochemical characterizations. Furthermore, a laser flash photolysis technique was carried on investigating the lifetime of the charge carrier of the fabricated dual heterostructures. In addition, sulfur and oxygen vacancies existed in AISR heterojunctions could largely constrain the recombination of electron-hole pairs. Density functional theory calculations were carried out to analyze the mechanism of photoinduced interfacial redox reactions, showing that reduced graphene oxide and AgInS2 act as electron and hole trappers in the photocatalytic reaction, respectively. Due to the interfacial electric field formed from AISR dual heterojunctions, the effective spatial charge separation and transfer contributed to the boosting photo(electro)catalytic performance.

16.
Bioorg Chem ; 100: 103915, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32450383

RESUMEN

In the present study, the effects of dihydroartemisinin (DHA) on inflammatory bowel diseases (IBD) mice model induced by dextran sulfate sodium (DSS) were determined. Hematoxylin and eosin staining was used to assess the intestines of mice treated with DSS and DHA. The expression of inflammatory factors and cell junction-associated genes was measured using reverse transcription-quantitative PCR (RT-qPCR) and Western blot. The effects of DSS and DHA on the gut microbiome were measured using 16S recombinant (r) DNA gene analysis. DHA could improve the diarrhea and bloody stool induced by DSS, and decrease the serum levels of TNF-α, IL-1ß and IL-23 of the DSS group. DHA could notably reduce the infiltration of the inflammatory cells and significantly decrease the expression of TNF-α and IL-1ß in the intestines of the DSS treated mice. The expression of cell junction-associated genes such as EpCAM and Claudins, were down-regulated in the DSS group, and DHA could recover the expression of these cell junction-associated genes. The 16S rDNA gene analysis demonstrated that Bacteroidetes and Verrucomicrobia decreased, while Firmicutes and Proteobacteria increased in the DSS group, and DHA could recover the abundance of these gut bacteria altered by DSS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DHA could partly recover the pathways altered by DSS. DHA could obviously ameliorate the symptoms of IBD induced by DSS by regulation of the expression of inflammation and cell junction-associated genes and gut microbiota, suggesting its potential for the treatment of IBD.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Animales , Antimaláricos/farmacología , Artemisininas/farmacología , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Sensors (Basel) ; 20(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429110

RESUMEN

Reliable estimates of terrestrial latent heat flux (LE) at high spatial and temporal resolutions are of vital importance for energy balance and water resource management. However, currently available LE products derived from satellite data generally have high revisit frequency or fine spatial resolution. In this study, we explored the feasibility of the high spatiotemporal resolution LE fusion framework to take advantage of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Chinese GaoFen-1 Wide Field View (GF-1 WFV) data. In particular, three-fold fusion schemes based on Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) were employed, including fusion of surface reflectance (Scheme 1), vegetation indices (Scheme 2) and high order LE products (Scheme 3). Our results showed that the fusion of vegetation indices and further computing LE (Scheme 2) achieved better accuracy and captured more detailed information of terrestrial LE, where the determination coefficient (R2) varies from 0.86 to 0.98, the root-mean-square error (RMSE) ranges from 1.25 to 9.77 W/m2 and the relative RSME (rRMSE) varies from 2% to 23%. The time series of merged LE in 2017 using the optimal Scheme 2 also showed a relatively good agreement with eddy covariance (EC) measurements and MODIS LE products. The fusion approach provides spatiotemporal continuous LE estimates and also reduces the uncertainties in LE estimation, with an increment in R2 by 0.06 and a decrease in RMSE by 23.4% on average. The proposed high spatiotemporal resolution LE estimation framework using multi-source data showed great promise in monitoring LE variation at field scale, and may have value in planning irrigation schemes and providing water management decisions over agroecosystems.

18.
Glob Chang Biol ; 25(1): 144-154, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295402

RESUMEN

Winter snow is an important driver of tree growth in regions where growing-season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961-2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing-season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre-growing-season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing-season temperature and early growing-season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.


Asunto(s)
Cambio Climático , Clima , Árboles/crecimiento & desarrollo , China , Ecosistema , Estaciones del Año , Nieve
19.
Environ Sci Technol ; 53(19): 11391-11400, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31436973

RESUMEN

The maximization of the numbers of exposed active sites in supported metal catalysts is important to achieve high reaction activity. In this work, a simple strategy for anchoring single atom Fe on SBA-15 to expose utmost Fe active sites was proposed. Iron salts were introduced into the as-made SBA-15 containing the template and calcined for simultaneous decomposition of the iron precursor and the template, resulting in single atom Fe sites in the nanopores of SBA-15 catalysts (SAFe-SBA). X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and extended X-ray absorption fine structure (EXAFS) imply the presence of single atom Fe sites. Furthermore, EXAFS analysis suggests the structure of one Fe center with four O atoms, and density functional theory calculations (DFT) simulate this structure. The catalytic performances of SAFe-SBA were evaluated in Fenton-like catalytic oxidation of p-hydroxybenzoic acid (HBA) and phenol. It was found that the single atom SAFe-SBA catalysts displayed superior catalytic activity to aggregated iron sites (AGFe-SBA) in both HBA and phenol degradation, demonstrating the advantage of SAFe-SBA in catalysis.


Asunto(s)
Hierro , Fenol , Catálisis , Oxidación-Reducción , Difracción de Rayos X
20.
Phys Chem Chem Phys ; 21(21): 10947-10954, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31099364

RESUMEN

Graphene is widely used in numerous scientific fields including physics, chemistry and materials science due to its exceptional electrical, thermal, optical and mechanical properties. However, the poor solubility/dispersibility strongly limits the practical applications of graphene. In this work, hydroxypropyl hydrazine (HPH) was synthesized to reduce graphene oxide (GO) under mild conditions. The as-produced graphene sheets with a 3D-porous structure show admirable dispersion stability in N,N-dimethylacetamide (DMAc) and the graphene sheets are more effective absorbents for Cu2+ removal than those reduced by hydrazine hydrate. A mechanism for removal of epoxides and carboxides from GO by HPH has been proposed. This one-step reducing and dispersing process of GO is more efficient, environmentally benign and safer for the bulk-scale production of 3D porous graphene.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda