Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
FEMS Yeast Res ; 20(6)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32840573

RESUMEN

Limonene, a valuable cyclic monoterpene, has been broadly studied in recent decades due to its wide application in the food, cosmetics and pharmaceutical industries. Engineering of the yeast Yarrowia lipolytica for fermentation of renewable biomass lignocellulosic hydrolysate may reduce the cost and improve the economics of bioconversion for the production of limonene. The aim of this study was to engineer Y. lipolytica to produce limonene from xylose and low-cost lignocellulosic feedstock. The heterologous genes XR and XDH and native gene XK encoding xylose assimilation enzymes, along with the heterologous genes tNDPS1 and tLS encoding orthogonal limonene biosynthetic enzymes, were introduced into the Po1f strain to facilitate xylose fermentation to limonene. The initially developed strain produced 0.44 mg/L of limonene in 72 h with 20 g/L of xylose. Overexpression of genes from the mevalonate pathway, including HMG1 and ERG12, significantly increased limonene production from xylose to ∼9.00 mg/L in 72 h. Furthermore, limonene production peaked at 20.57 mg/L with 50% hydrolysate after 72 h when detoxified lignocellulosic hydrolysate was used. This study is the first to report limonene production by yeast from lignocellulosic feedstock, and these results indicate the initial steps toward economical and sustainable production of isoprenoids from renewable biomass by engineered Y. lipolytica.


Asunto(s)
Lignina/metabolismo , Limoneno/metabolismo , Ingeniería Metabólica , Xilosa/metabolismo , Yarrowia/metabolismo , Fermentación , Microbiología Industrial , Redes y Vías Metabólicas , Yarrowia/genética
2.
J Agric Food Chem ; 70(48): 15157-15165, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36444843

RESUMEN

The low enzymatic capability of terpene synthases and the limited availability of precursors often hinder the productivity of terpenes in microbial hosts. Herein, a systematic approach combining protein engineering and pathway compartmentation was exploited in Yarrowia lipolytica for the high-efficient production of trans-nerolidol, a sesquiterpene with various commercial applications. Through the single-gene overexpression, the reaction catalyzed by nerolidol synthase (FaNES1) was identified as another rate-limiting step. An optimized FaNES1G498Q was then designed by rational protein engineering using homology modeling and docking studies. Additionally, further improvement of trans-nerolidol production was observed as enhancing the expression of an endogenous carnitine acetyltransferase (CAT2) putatively responsible for acetyl-CoA shuttling between peroxisome and cytosol. To harness the peroxisomal acetyl-CoA pool, a parallel peroxisomal pathway starting with acetyl-CoA to trans-nerolidol was engineered. Finally, the highest reported titer of 11.1 g/L trans-nerolidol in the Y. lipolytica platform was achieved in 5 L fed-batch fermentation with the carbon restriction approach.


Asunto(s)
Yarrowia , Yarrowia/genética , Acetilcoenzima A
3.
J Agric Food Chem ; 69(1): 275-285, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33356235

RESUMEN

α-Pinene, an important biologically active natural monoterpene, has been widely used in fragrances, medicines, and fine chemicals, especially, in high-density renewable fuels such as jet fuel. The development of an α-pinene production platform in a highly modifiable microbe from renewable substitute feedstocks could lead to a green, economical avenue, and sustainable biotechnological process for the biosynthesis of α-pinene. Here, we report engineering of an orthogonal biosynthetic pathway for efficient production of α-pinene in oleaginous yeast Yarrowia lipolytica that resulted in an α-pinene titer of 19.6 mg/L when using glucose as the sole carbon source, a significant 218-fold improvement than the initial titer. In addition, the potential of using waste cooking oil and lignocellulosic hydrolysate as carbon sources for α-pinene production from the engineered Y. lipolytica strains was analyzed. The results indicated that α-pinene titers of 33.8 and 36.1 mg/L were successfully obtained in waste cooking oil and lignocellulosic hydrolysate medium, thereby representing the highest titer reported to date in yeast. To our knowledge, this is also the first report related to microbial production of α-pinene from waste cooking oil and lignocellulosic hydrolysate.


Asunto(s)
Monoterpenos Bicíclicos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Biocombustibles/análisis , Vías Biosintéticas , Fermentación , Glucosa/metabolismo , Lignina/metabolismo , Ingeniería Metabólica
4.
J Biotechnol ; 319: 74-81, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32533992

RESUMEN

Farnesene is a typical sesquiterpene with applications as fragrance, flavor and precursor for the synthesis of vitamin E/K1. In this study, a series of strategies were employed to facilitate α-farnesene accumulation in Yarrowia lipolytica. Among them, the promoter optimization of OptFSLERG20, Sc-tHMG1 and IDI resulted in more than 62 % increase in α-farnesene production. Together with the overexpression of Yl-HMGR and ERG19, α-farnesene content was significantly improved by more than 3.5 times. The best metabolic engineered strain obtained was therefore used for a uniform design in shake flasks to determine the optimal medium compositions. Furthermore, a maximum α-farnesene production of approximately 2.57 g/L (34 mg/g DCW) was obtained in fed-batch fermentation where glycerol was supplemented as the feeding carbon source when initial glucose was depleted. This study has laid a good foundation for the development of Y. lipolytica as a promising chassis microbial cell for heterologous biosynthesis of α-farnesene and other sesquiterpenes.


Asunto(s)
Ingeniería Metabólica/métodos , Sesquiterpenos/metabolismo , Yarrowia , Acetilcoenzima A/metabolismo , Ácido Mevalónico/metabolismo , Regiones Promotoras Genéticas/genética , Yarrowia/genética , Yarrowia/metabolismo
5.
J Agric Food Chem ; 68(39): 10730-10740, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32896122

RESUMEN

The oleaginous yeast Yarrowia lipolytica is an attractive cell factory platform strain and can be used for sustainable production of high-value oleochemical products. Wax esters (WEs) have a good lubricating property and are usually used as a base for the production of advanced lubricants and emollient oils. In this study, we reported the metabolic engineering of Y. lipolytica to heterologously biosynthesize high-content very-long-chain fatty acids (VLCFAs) and fatty alcohols and efficiently esterify them to obtain very-long-chain WEs. Co-expression of fatty acid elongases from different sources in Y. lipolytica could yield VLCFAs with carbon chain lengths up to 24. Combining with optimization of the central metabolic modules could further enhance the biosynthesis of VLCFAs. Furthermore, through the screening of heterologous fatty acyl reductases (FARs), we enabled high-level production of fatty alcohols. Genomic integration and heterologous expression of wax synthase (WS) and FAR in a VLCFA-producing Y. lipolytica strain yielded 95-650 mg/L WEs with carbon chain lengths from 32 to 44. Scaled-up fermentation in 5 L laboratory bioreactors significantly increased the production of WEs to 2.0 g/L, the highest content so far in yeasts. This study contributes to the further efficient biosynthesis of VLCFAs and their derivatives.


Asunto(s)
Ésteres/metabolismo , Ácidos Grasos/biosíntesis , Ceras/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ésteres/química , Ácidos Grasos/química , Ingeniería Metabólica , Ceras/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda