Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biol Reprod ; 107(1): 148-156, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35774031

RESUMEN

The prevalence of gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig cells (FLCs) and Sertoli cells (SCs). Pregnant mice were treated on gestational days 6.5 and 12.5 with streptozotocin (100 mg/kg) or vehicle (sodium citrate buffer). Leydig cell and SC development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of desert hedgehog in SCs of testes of male offspring. FLC number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/ß-catenin signaling was activated and Gsk3ß signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.


Asunto(s)
Diabetes Gestacional , Testículo , Animales , Diabetes Gestacional/metabolismo , Femenino , Desarrollo Fetal , Humanos , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Embarazo , Células de Sertoli/metabolismo , Testículo/metabolismo , Testosterona
2.
Huan Jing Ke Xue ; 45(7): 4137-4151, 2024 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-39022961

RESUMEN

Ecosystem service assessment and prediction play a crucial role in sustainable regional development and resource management. Liaoning Province, as a typical representative of Northeast China, faces rapid development challenges such as urbanization, industrialization, and agricultural modernization. At the same time, there is an urgent need for a deeper understanding of the evolution trends of its ecosystems and their impact on ecosystem services. This study employed the InVEST-Markov-PLUS model to conduct simulated research on the assessment of past and future ecosystem services and multi-scenario predictions in Liaoning Province. Based on the land-use changes in Liaoning Province from 2000 to 2020, the InVEST model was used to evaluate the spatiotemporal variations in carbon storage, soil conservation, and water yield in the ecosystem services from 2000 to 2020. Additionally, the equivalent factor method was employed to calculate the value of ecosystem services in Liaoning Province during the same period. Furthermore, by integrating the PLUS and Markov models with the actual conditions of Liaoning Province, four land-use development scenarios for 2030 were constructed, including natural development, economic priority, ecological protection, and cropland protection. The land-use distribution and the quantities and values of ecosystem services under these scenarios were simulated. The study revealed the following findings: ① From 2000 to 2020, carbon storage and soil retention in Liaoning Province showed an overall increasing trend, whereas water yield exhibited a fluctuating decrease trend initially, followed by an increase and then another decrease. ② Carbon storage and soil retention in Liaoning Province showed higher values in the eastern mountainous areas and western hilly regions, with lower values in the central region. Water yield showed a decreasing trend from east to west. ③ The value of ecosystem services increased from 547.94 billion yuan to 565.53 billion yuan, with a total increase of 17.58 billion yuan during the study period. All four types of services showed an increase, with cultural services experiencing the fastest change. ④ In 2030, carbon storage and soil retention in Liaoning Province decreased in all scenarios except for in the ecological protection scenario. Water yield increased only in the cropland protection scenario, whereas it decreased in the other three scenarios. The value of ecosystem services in the study area increased in all scenarios except for in the economic priority scenario.

3.
Nutr Diabetes ; 14(1): 56, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043630

RESUMEN

BACKGROUND: Maternal diabetes mellitus can influence the development of offspring. Gestational diabetes mellitus (GDM) creates a short-term intrauterine hyperglycaemic environment in offspring, leading to glucose intolerance in later life, but the long-term effects and specific mechanism involved in skeletal muscle dysfunction in offspring remain to be clarified. METHODS: Pregnant mice were divided into two groups: The GDM group was intraperitoneally injected with 100 mg/kg streptozotocin on gestational days (GDs) 6.5 and 12.5, while the control (CTR) group was treated with vehicle buffer. Only pregnant mice whose random blood glucose level was higher than 16.8 mmol/L beginning on GD13.5 were regarded as the GDM group. The growth of the offspring was monitored, and the glucose tolerance test was performed at different time points. Body composition analysis and immunohistochemical methods were used to evaluate the development of lean mass at 8 weeks. The exercise capacity and grip strength of the male mouse offspring were assessed at the same period. Transmission electron microscopy was used to observe the morphology inside skeletal muscle at 8 weeks and as a foetus. The genes and proteins associated with mitochondrial biogenesis and oxidative metabolism were investigated. We also coanalyzed RNA sequencing and proteomics data to explore the underlying mechanism. Chromatin immunoprecipitation and bisulfite-converted DNA methylation detection were performed to evaluate this phenomenon. RESULTS: Short-term intrauterine hyperglycaemia inhibited the growth and reduced the lean mass of male offspring, leading to decreased endurance exercise capacity. The myofiber composition of the tibialis anterior muscle of GDM male offspring became more glycolytic and less oxidative. The morphology and function of mitochondria in the skeletal muscle of GDM male offspring were destroyed, and coanalysis of RNA sequencing and proteomics of foetal skeletal muscle showed that mitochondrial elements and lipid oxidation were consistently impaired. In vivo and in vitro myoblast experiments also demonstrated that high glucose concentrations impeded mitochondrial organisation and function. Importantly, the transcription of genes associated with mitochondrial biogenesis and oxidative metabolism decreased at 8 weeks and during the foetal period. We predicted Ppargc1α as a key upstream regulator with the help of IPA software. The proteins and mRNA levels of Ppargc1α in the skeletal muscle of GDM male offspring were decreased as a foetus (CTR vs. GDM, 1.004 vs. 0.665, p = 0.002), at 6 weeks (1.018 vs. 0.511, p = 0.023) and 8 weeks (1.006 vs. 0.596, p = 0.018). In addition, CREB phosphorylation was inhibited in GDM group, with fewer activated pCREB proteins binding to the CRE element of Ppargc1α (1.042 vs. 0.681, p = 0.037), Pck1 (1.091 vs. 0.432, p = 0.014) and G6pc (1.118 vs. 0.472, p = 0.027), resulting in their decreased transcription. Interestingly, we found that sarcopenia and mitochondrial dysfunction could even be inherited by the next generation. CONCLUSIONS: Short-term intrauterine hyperglycaemia significantly reduced lean mass in male offspring at 8 weeks, resulting in decreased exercise endurance and metabolic disorders. Disrupted organisation and function of the mitochondria in skeletal muscle were also observed among them. Foetal exposure to hyperglycaemia decreased the ratio of phosphorylated CREB and reduced the transcription of Ppargc1α, which inhibited the transcription of downstream genes involving in mitochondrial biogenesis and oxidative metabolism. Abnormal mitochondria, which might be transmitted through aberrant gametes, were also observed in the F2 generation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Diabetes Gestacional , Hiperglucemia , Músculo Esquelético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Animales , Femenino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Embarazo , Ratones , Masculino , Músculo Esquelético/metabolismo , Diabetes Gestacional/metabolismo , Hiperglucemia/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocondrias/metabolismo , Glucemia/metabolismo
4.
J Diabetes Res ; 2021: 4632745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869778

RESUMEN

Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.


Asunto(s)
Diabetes Gestacional/tratamiento farmacológico , MicroARNs/farmacología , Adulto , Diabetes Gestacional/genética , Exosomas/metabolismo , Femenino , Expresión Génica/genética , Expresión Génica/fisiología , Humanos , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Embarazo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda