Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Ther ; 31(2): 503-516, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384875

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis. Gemcitabine-based chemotherapy has become one of the main modalities of its management. However, gemcitabine resistance frequently occurs, leading to failure of PDAC therapy. Platelet-derived growth factors (PDGFs) and their receptors play important roles in cancer progression and chemoresistance. We aimed to investigate the biological function and therapeutic significance of platelet-derived growth factor C (PDGFC) in drug-resistant PDAC. Our study showed that PDGFC was abnormally highly expressed in gemcitabine-resistant PDAC. Silencing PDGFC expression can enhance the therapeutic effect of gemcitabine on PDAC. Mechanistically, the transcription of PDGFC is mediated by H3K27 acetylation, and PDGFC promotes gemcitabine resistance by activating the PDGFR-PI3K-AKT signaling pathway. The PDGFR inhibitor imatinib inhibits the PDGFR pathway. Imatinib and gemcitabine have a synergistic effect on the treatment of PDAC, and imatinib can significantly enhance the anti-tumor effect of gemcitabine in a drug-resistant PDAC patient-derived xenograft model. In conclusion, PDGFC is a potential predictor of gemcitabine-resistant PDAC. Imatinib inhibits PDGFR activation to promote gemcitabine sensitivity in PDAC. Combined modality regimen of imatinib and gemcitabine is likely to translate into clinical trial for the treatment of PDGFC-associated gemcitabine-resistant patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Desoxicitidina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos/genética
2.
Oncogene ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914663

RESUMEN

Gemcitabine resistance is a major obstacle to the effectiveness of chemotherapy in pancreatic ductal adenocarcinoma (PDAC). Therefore, new strategies are needed to sensitize cancer cells to gemcitabine. Here, we constructed gemcitabine-resistant PDAC cells and analyzed them with RNA-sequence. Employing an integrated approach involving bioinformatic analyses from multiple databases, TGFB2 is identified as a crucial gene in gemcitabine-resistant PDAC and is significantly associated with poor gemcitabine therapeutic response. The patient-derived xenograft (PDX) model further substantiates the gradual upregulation of TGFB2 expression during gemcitabine-induced resistance. Silencing TGFB2 expression can enhance the chemosensitivity of gemcitabine against PDAC. Mechanistically, TGFB2, post-transcriptionally stabilized by METTL14-mediated m6A modification, can promote lipid accumulation and the enhanced triglyceride accumulation drives gemcitabine resistance by lipidomic profiling. TGFB2 upregulates the lipogenesis regulator sterol regulatory element binding factor 1 (SREBF1) and its downstream lipogenic enzymes via PI3K-AKT signaling. Moreover, SREBF1 is responsible for TGFB2-mediated lipogenesis to promote gemcitabine resistance in PDAC. Importantly, TGFB2 inhibitor imperatorin combined with gemcitabine shows synergistic effects in gemcitabine-resistant PDAC PDX model. This study sheds new light on an avenue to mitigate PDAC gemcitabine resistance by targeting TGFB2 and lipid metabolism and develops the potential of imperatorin as a promising chemosensitizer in clinical translation.

3.
Cancer Lett ; 585: 216640, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38290659

RESUMEN

Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Autofagia , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética
4.
Int J Clin Exp Pathol ; 11(2): 512-525, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31938137

RESUMEN

AIMS: Squamous cell/adenosquamous carcinomas (SC/ASC) are rare subtypes of gallbladder cancers (GBCs). Clinical characteristics of SC/ASC have not been well documented, and no biological markers of GBC carcinogenesis, progression and prognosis are available. METHODS: We detected EphA10 and EphB3 expression in 69 SC/ASCs and 146 adenocarcinomas (ACs) with EnVision immunohistochemistry. RESULTS: The percentage of cases with a patient age of > 45 years, lymph node metastasis and invasion was significantly higher in the SCs/ASCs compared with the ACs (P < 0.05). The positive expression of EphA10 and negative expression of EphB3 were significantly higher in the cases of SC/ASC and AC than in chronic cholecystitis (P < 0.01). The positive expressions of EphA10 and negative expression of EphB3 were significantly higher in the cases of poorly differentiation, large tumor size, high TNM stage, lymph node metastasis, invasion and no resection (only biopsy) of SC/ASC and AC. The negative correlation was found between EphA10 and EphB3 expression in SC/ASC and AC (P < 0.01). The univariate Kaplan-Meier analysis showed that positive EphA10 and negative EphB3, differentiation, tumor size, TNM stage, lymph node metastasis, invasion and surgical curability, is closely associated with a decreased overall survival in SC/ASC and AC patients (P < 0.05 or P < 0.01). The multivariate Cox regression analysis identified that positive EphA10 and negative EphB3 expression are independent factors for a poor-prognosis in SC/ASC and AC patients. The AUC for EphA10 and EphB3 showed might have role for carcinogenesis and progression of SC/ASC and AC. CONCLUSIONS: The present study indicates that positive EphA10 and negative EphB3 expression are closely associated with the pathogenesis, clinical, pathological and biological behaviors, and poor prognosis in gallbladder cancer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda