Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Prostaglandins Other Lipid Mediat ; 156: 106582, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273491

RESUMEN

Millions of people are affected by neurodegenerative diseases worldwide. They occur due to the loss of brain functions or peripheral nervous system dysfunction. If untreated, prolonged condition ultimately leads to death. Mostly they are associated with stress, altered cholesterol metabolism, inflammation and organelle dysfunction. Endogenous cholesterol and phospholipids in brain undergo auto-oxidation by enzymatic as well as non-enzymatic modes leading to the formation of by-products such as 4-hydroxynonenal and oxysterols. Among various oxysterols, 7-ketocholesterol (7KCh) is one of the major toxic components involved in altering neuronal lipid metabolism, contributing to inflammation and nerve cell damage. More evidently 7KCh is proven to induce oxidative stress and affects membrane permeability. Loss in mitochondrial membrane potential affects metabolism of cell organelles such as lysosomes and peroxisomes which are involved in lipid and protein homeostasis. This in turn could affect amyloidogenesis, tau protein phosphorylation and accumulation in pathological conditions of neurodegenerative diseases. Lipid alterations and the consequent pathogenic protein accumulation, results in the damage of cell organelles and microglial cells. This could be a reason behind disease progression and predominantly reported characteristics of neurodegenerative disorders such as Alzheimer's disease. This review focuses on the role of 7KCh mediated neurodegenerative Alzheimer's disease with emphasis on alterations in the lipid raft microdomain. In addition, current trends in the significant therapies related to 7KCh inhibition are highlighted.


Asunto(s)
Enfermedad de Alzheimer
2.
Artículo en Inglés | MEDLINE | ID: mdl-33334298

RESUMEN

Atherosclerosis, a major contributor to cardiovascular disease, is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes the recruitment of monocytes to the inflammatory sites and subsides pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 have to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of pro-inflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage have atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Macrófagos/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda