Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176038

RESUMEN

UV radiation is used for sterilization but has adverse health effects in humans. UV-A radiation has lower antimicrobial effect than UV-B and UV-C but constitutes a lower health risk, opening up the possibility to sanitize environments with human presence in controlled exposure conditions. We investigated this possibility by identifying safe exposure conditions to a UV-A lamp along with efficient sanitization of the environment. The human exposure limits were calculated following the guidelines provided by the International Commission on Non-Ionizing Radiation Protection and the International Commission on Illumination. Antibacterial activity was evaluated on Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The maximum human exposure duration has been identified at different irradiation distance and angle, increasing with the increase of both parameters. Bactericidal activity was observed in all microorganisms and was higher with higher exposure time and at lower distance from the source. Noteworthily, in equal conditions of radiant exposure, the exposure time impacts on the bactericidal activity more than the distance from the source. The modulation of factors such as distance from the source, exposure time and irradiation angle can enable effective antibacterial activity and human safety. Prolonged direct irradiation of the surfaces associated with indirect human exposure represents the condition of greater efficacy and safety.


Asunto(s)
Pseudomonas aeruginosa , Rayos Ultravioleta , Humanos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología
2.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108596

RESUMEN

Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based on different pathogenic characteristics previously assessed: virulence in Galleria mellonella larvae, cytotoxicity in human bronchial epithelial cells, and biofilm formation. Acute lung infection was established by intratracheal instillation with 10.5 × 108 bacterial cells in wild-type and CFTR-knockout (KO) mice expressing a luciferase gene under control of interleukin-8 promoter. Lung inflammation was monitored by in vivo bioluminescence imaging up to 48 h after infection, and mortality was recorded up to 96 h. Lung bacterial load was evaluated by CFU count. Virulent isolates caused higher lung inflammation and mice mortality, especially in KO animals. Isolates both virulent and cytotoxic showed higher persistence in mice lungs, while biofilm formation was not associated with lung inflammation, mice mortality, or bacterial persistence. A positive correlation between virulence and lung inflammation was observed. These results indicate that Achromobacter spp. pathogenic characteristics such as virulence and cytotoxicity may be associated with clinically relevant effects and highlight the importance of elucidating their mechanisms.


Asunto(s)
Achromobacter , Fibrosis Quística , Neumonía , Humanos , Ratones , Animales , Fibrosis Quística/microbiología , Achromobacter/genética , Pulmón/microbiología , Neumonía/complicaciones , Inflamación/complicaciones , Ratones Noqueados
3.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012535

RESUMEN

Achromobacter spp. can establish occasional or chronic lung infections in patients with cystic fibrosis (CF). Chronic colonization has been associated with worse prognosis highlighting the need to identify markers of bacterial persistence. To this purpose, we analyzed phenotypic features of 95 Achromobacter spp. isolates from 38 patients presenting chronic or occasional infection. Virulence was tested in Galleria mellonella larvae, cytotoxicity was tested in human bronchial epithelial cells, biofilm production in static conditions was measured by crystal violet staining and susceptibility to selected antibiotics was tested by the disk diffusion method. The presence of genetic loci associated to the analyzed phenotypic features was evaluated by a genome-wide association study. Isolates from occasional infection induced significantly higher mortality of G. mellonella larvae and showed a trend for lower cytotoxicity than chronic infection isolates. No significant difference was observed in biofilm production among the two groups. Additionally, antibiotic susceptibility testing showed that isolates from chronically-infected patients were significantly more resistant to sulfonamides and meropenem than occasional isolates. Candidate genetic biomarkers associated with antibiotic resistance or sensitivity were identified. Achromobacter spp. strains isolated from people with chronic and occasional lung infection exhibit different virulence and antibiotic susceptibility features, which could be linked to persistence in CF lungs. This underlines the possibility of identifying predictive biomarkers of persistence that could be useful for clinical purposes.


Asunto(s)
Achromobacter , Fibrosis Quística , Achromobacter/genética , Antibacterianos/farmacología , Biomarcadores , Fibrosis Quística/complicaciones , Farmacorresistencia Bacteriana , Estudio de Asociación del Genoma Completo , Humanos , Pruebas de Sensibilidad Microbiana
4.
J Transl Med ; 14(1): 226, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27468800

RESUMEN

BACKGROUND: Experimentally, lung inflammation in laboratory animals is usually detected by the presence of inflammatory markers, such as immune cells and cytokines, in the bronchoalveolar lavage fluid (BALF) of sacrificed animals. This method, although extensively used, is time, money and animal life consuming, especially when applied to genetically modified animals. Thus a new and more convenient approach, based on in vivo imaging analysis, has been set up to evaluate the inflammatory response in the lung of CFTR-deficient (CF) mice, a murine model of cystic fibrosis. METHODS: Wild type (WT) and CF mice were stimulated with P. aeruginosa LPS, TNF-alpha and culture supernatant derived from P. aeruginosa (strain VR1). Lung inflammation was detected by measuring bioluminescence in vivo in mice transiently transgenized with a luciferase reporter gene under the control of a bovine IL-8 gene promoter. RESULTS: Differences in bioluminescence (BLI) signal were revealed by comparing the two types of mice after intratracheal challenge with pro-inflammatory stimuli. BLI increased at 4 h after stimulation with TNF-alpha and at 24 h after administration of LPS and VR1 supernatant in CF mice with respect to untreated animals. The BLI signal was significantly more intense and lasted for longer times in CF animals when compared to WT mice. Analysis of BALF markers: leukocytes, cytokines and histology revealed no significant differences between CF and WT mice. CONCLUSIONS: In vivo gene delivery technology and non-invasive bioluminescent imaging has been successfully adapted to CFTR-deficient mice. Activation of bIL-8 transgene promoter can be monitored by non-invasive BLI imaging in the lung of the same animal and compared longitudinally in both CF or WT mice, after challenge with pro-inflammatory stimuli. The combination of these technologies and the use of CF mice offer the unique opportunity of evaluating the impact of therapies aimed to control inflammation in a CF background.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Neumonía/metabolismo , Neumonía/patología , Animales , Líquido del Lavado Bronquioalveolar , Fibrosis Quística , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citocinas , Femenino , Procesamiento de Imagen Asistido por Computador , Ratones Endogámicos C57BL , Ratones Endogámicos CFTR
5.
J Transl Med ; 13: 251, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26239109

RESUMEN

BACKGROUND: Chronic inflammation of the airways is a central component in lung diseases and is frequently associated with bacterial infections. Monitoring the pro-inflammatory capability of bacterial virulence factors in vivo is challenging and usually requires invasive methods. METHODS: Lung inflammation was induced using the culture supernatants from two Pseudomonas aeruginosa clinical strains, VR1 and VR2, isolated from patients affected by cystic fibrosis and showing different phenotypes in terms of motility, colony characteristics and biofilm production as well as pyoverdine and pyocyanine release. More interesting, the strains differ also for the presence in supernatants of metalloproteases, a family of virulence factors with known pro-inflammatory activity. We have evaluated the benefit of using a mouse model, transiently expressing the luciferase reporter gene under the control of an heterologous IL-8 bovine promoter, to detect and monitoring lung inflammation. RESULTS: In vivo imaging indicated that VR1 strain, releasing in its culture supernatant metalloproteases and other virulence factors, induced lung inflammation while the VR2 strain presented with a severely reduced pro-inflammatory activity. The bioluminescence signal was detectable from 4 to 48 h after supernatant instillation. The animal model was also used to test the anti-inflammatory activity of azithromycin (AZM), an antibiotic with demonstrated inhibitory effect on the synthesis of bacterial exoproducts. The inflammation signal in mice was in fact significantly reduced when bacteria grew in the presence of a sub-lethal dose of AZM causing inhibition of the synthesis of metalloproteases and other bacterial elements. The in vivo data were further supported by quantification of immune cells and cytokine expression in mouse broncho-alveolar lavage samples. CONCLUSIONS: This experimental animal model is based on the transient transduction of the bovine IL-8 promoter, a gene representing a major player during inflammation, essential for leukocytes recruitment to the inflamed tissue. It appears to be an appropriate molecular read-out for monitoring the activation of inflammatory pathways caused by bacterial virulence factors. The data presented indicate that the model is suitable to functionally monitor in real time the lung inflammatory response facilitating the identification of bacterial factors with pro-inflammatory activity and the evaluation of the anti-inflammatory activity of old and new molecules for therapeutic use.


Asunto(s)
Azitromicina/uso terapéutico , Diagnóstico por Imagen , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología , Animales , Azitromicina/farmacología , Líquido del Lavado Bronquioalveolar , Bovinos , Citocinas/metabolismo , Femenino , Humanos , Interleucina-8/metabolismo , Ratones Endogámicos BALB C , Ratones Transgénicos , Péptido Hidrolasas/metabolismo , Fenotipo , Neumonía/complicaciones , Infecciones por Pseudomonas/complicaciones , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/metabolismo
6.
Pathogens ; 13(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38251387

RESUMEN

Infections caused by Staphylococcus aureus are particularly difficult to treat due to the high rate of antibiotic resistance. S. aureus also forms biofilms that reduce the effects of antibiotics and disinfectants. Therefore, new therapeutic approaches are increasingly required. In this scenario, plant waste products represent a source of bioactive molecules. In this study, we evaluated the antimicrobial and antibiofilm activity of the rice husk extract (RHE) on S. aureus clinical isolates. In a biofilm inhibition assay, high concentrations of RHE counteracted the formation of biofilm by S. aureus isolates, both methicillin-resistant (MRSA) and -sensitive (MSSA). The observation of the MRSA biofilm by confocal laser scanning microscopy using live/dead cell viability staining confirmed that the bacterial viability in the RHE-treated biofilm was reduced. However, the extract showed no or little biofilm disaggregation ability. An additive effect was observed when treating S. aureus with a combination of RHE and oxacillin/cefoxitin. In Galleria mellonella larvae treated with RHE, the extract showed no toxicity even at high concentrations. Our results support that the rice husk has antimicrobial and antibiofilm properties and could potentially be used in the future in topical solutions or on medical devices to prevent biofilm formation.

7.
Microb Ecol ; 66(1): 224-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23657544

RESUMEN

During the infectious process, pathogens may reach anatomical sites where they are exposed to substances interfering with their growth. These substances can include molecules produced by the host, and his resident microbial population, as well as exogenous antibacterial drugs. Suboptimal concentrations of inhibitory molecules and stress conditions found in vivo (high or low temperatures, lack of oxygen, extreme pH) might induce in bacteria the activation of survival mechanisms blocking their division capability but allowing them to stay alive. These "dormant" bacteria can be reactivated in particular circumstances and would be able to express their virulence traits. In this study, it was evaluated the effect of some environmental conditions, such as optimal and suboptimal temperatures, direct light and antibiotic sub-inhibitory concentrations doses of antibiotic, on the human pathogens Escherichia coli and Enterococcus faecalis when incubated in fluids accumulated in the body of patients with different pathologies. It is shown that inoculation in a number of accumulated body fluids and the presence of gentamicin, reliable conditions encountered during pathological states, induce stress-responding strategies enabling bacteria to persist in microcosms mimicking the human body. Significant differences were detected in Gram-negative and Gram-positive species with E. faecalis surviving, as starved or viable but non-culturable forms, in any microcosm and condition tested and E. coli activating a viable but non-culturable state only in some clinical samples. The persistence of bacteria under these conditions, being non-culturable, might explain some recurrent infections without isolation of the causative agent after application of the standard microbiological methods.


Asunto(s)
Líquido Ascítico/microbiología , Infecciones Bacterianas/microbiología , Enterococcus faecalis/fisiología , Escherichia coli/fisiología , Líquido Sinovial/microbiología , Antibacterianos/farmacología , Líquido Ascítico/química , Enterococcus faecalis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Viabilidad Microbiana , Líquido Sinovial/química
8.
Photochem Photobiol ; 99(6): 1476-1482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825386

RESUMEN

Ultraviolet (UV) radiation can elicit both bactericidal and bacteriostatic activity depending on light parameters and targeted bacteria. Current methods based on bacterial growth on solid medium allow measurement of only bactericidal but not bacteriostatic activity, while liquid cultures exhibit low light penetration. Here, we propose a method to quantify both bactericidal and bacteriostatic activity of radiation based on (a) bacterial cultures on solid medium, (b) acquisition and quantitative analysis of photographic images of plates containing bacterial colonies, (c) application of two mathematical equations to evaluate bactericidal and bacteriostatic activity. The proposed method considers the differences in growth on test and control (unexposed) plates. The measurements performed on the plates image are the independent variables of the mathematical equations returning the values of bactericidal and bacteriostatic activity. Experimentally, a test was performed using Escherichia coli grown on a solid medium and exposed to UVA (365 nm) radiation. The standard method allowed quantifying bactericidal activity and evaluating only qualitatively bacteriostatic activity of the radiation. Differently, the new method here proposed allowed quantification of both activities. The proposed method proved to be simple, enabling deep assessment of the antibacterial effects of UV radiation directly on the solid medium through image acquisition and analysis.


Asunto(s)
Antibacterianos , Rayos Ultravioleta , Antibacterianos/farmacología , Escherichia coli , Bacterias
9.
Front Cell Infect Microbiol ; 13: 1155451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065200

RESUMEN

Background: Mycoplasma genitalium (MG) is one of the most warning emerging sexually transmitted pathogens also due to its ability in developing resistance to antibiotics. MG causes different conditions ranging from asymptomatic infections to acute mucous inflammation. Resistance-guided therapy has demonstrated the best cure rates and macrolide resistance testing is recommended in many international guidelines. However, diagnostic and resistance testing can only be based on molecular methods, and the gap between genotypic resistance and microbiological clearance has not been fully evaluated yet. This study aims at finding mutations associated with MG antibiotic resistance and investigating the relationship with microbiological clearance amongst MSM. Methods: From 2017 to 2021, genital (urine) and extragenital (pharyngeal and anorectal swabs) biological specimens were provided by men-who-have-sex-with-men (MSM) attending the STI clinic of the Infectious Disease Unit at the Verona University Hospital, Verona, Italy. A total of 1040 MSM were evaluated and 107 samples from 96 subjects resulted positive for MG. Among the MG-positive samples, all those available for further analysis (n=47) were considered for detection of mutations known to be associated with macrolide and quinolone resistance. 23S rRNA, gyrA and parC genes were analyzed by Sanger sequencing and Allplex™ MG and AziR Assay (Seegene). Results: A total of 96/1040 (9.2%) subjects tested positive for MG in at least one anatomical site. MG was detected in 107 specimens: 33 urine samples, 72 rectal swabs and 2 pharyngeal swabs. Among them, 47 samples from 42 MSM were available for investigating the presence of mutations associated with macrolide and quinolone resistance: 30/47 (63.8%) showed mutations in 23S rRNA while 10/47 (21.3%) in parC or gyrA genes. All patients with positive Test of Cure (ToC) after first-line treatment with azithromycin (n=15) were infected with 23S rRNA-mutated MG strains. All patients undergoing second-line moxifloxacin treatment (n=13) resulted negative at ToC, even those carrying MG strains with mutations in parC gene (n=6). Conclusion: Our observations confirm that mutations in 23S rRNA gene are associated with azithromycin treatment failure and that mutations in parC gene alone are not always associated with phenotypic resistance to moxifloxacin. This reinforces the importance of macrolide resistance testing to guide the treatment and reduce antibiotic pressure on MG strains.


Asunto(s)
Mycoplasma genitalium , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Masculino , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Moxifloxacino/farmacología , Azitromicina/farmacología , Mycoplasma genitalium/genética , Homosexualidad Masculina , Fluoroquinolonas/farmacología , ARN Ribosómico 23S/genética , Macrólidos/farmacología , Farmacorresistencia Bacteriana/genética , Mutación , Genitales , Prevalencia
10.
Microbiol Spectr ; 11(1): e0423522, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36537824

RESUMEN

The recovery and characterization of a multidrug-resistant, KPC-3-producing Klebsiella michiganensis that was obtained from Venus clam samples is reported in this study. A whole-genome sequencing (WGS) analysis using Illumina and Nanopore technologies of the K. michiganensis 23999A2 isolate revealed that the strain belonged to the new sequence type 382 (ST382) and carried seven plasmid replicon sequences, including four IncF type plasmids (FII, FIIY, FIIk, and FIB), one IncHI1 plasmid, and two Col plasmids. The FIB and FIIk plasmids showed high homology to each other and to multireplicon pKpQIL-like plasmids that are found in epidemic KPC-K. pneumoniae clones worldwide. The strain carried multiple ß-lactamase genes on the IncF plasmids: blaOXA-9 and blaTEM-1A on FIB, blaKPC-3 inserted in a Tn4401a on FIIK, and blaSHV-12 on FIIY. The IncHI1-ST11 harbored no resistance gene. The curing of the strain caused the loss of all of the bla genes and a rearrangement of the IncF plasmids. Conjugal transfer of the blaOXA-9, blaTEM-1A and blaKPC-3 genes occurred at a frequency of 5 × 10-7, using K. quasipneumoniae as a recipient, and all of the bla genes were transferred through a pKpQIL that originated from the recombination of the FIB and FIIk plasmids of the donor. A comparison with 31 K. michiganensis genomes that are available in the NCBI database showed that the closest phylogenetic relatives of K. michiganensis 23999A2 are an environmental isolate from soil in South Korea and a clinical isolate from human sputum in Japan. Finally, a pan-genome analysis showed a large accessory genome of the strain as well as the great genomic plasticity of the K. michiganensis species. IMPORTANCE Klebsiella michiganensis is an emerging nosocomial pathogen, and, so far, few studies describe isolates of clinical origin in the environment. This study contributes to the understanding of how the dissemination of carbapenem-resistance outside the hospital setting may be related to the circulation of pKpQIL-like plasmids that are derived from epidemic Klebsiella pneumoniae strains. The recovery of a carbapenem-resistant isolate in clams is of great concern, as bivalves could represent vehicles of transmission of pathogens and resistance genes to humans via the food chain. The study demonstrates the plasticity of K. michiganensis genome, which is probably useful to multiple environment adaptation and to the evolution of the species.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , Filogenia , Infecciones por Klebsiella/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Klebsiella pneumoniae , beta-Lactamasas/genética , Carbapenémicos/farmacología , Hospitales , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
11.
Microb Ecol ; 63(1): 20-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21826491

RESUMEN

In the marine environment, the persistence and abundance of Vibrio are related to a number of environmental parameters. The influence of the different environmental variables in determining the Vibrio occurrence could be different in the specific geographic areas around the world. Moreover, oceanographic parameters are generally interdependent and should not be considered separately when their influence on bacterial presence and concentration is tested. In this study, an integrated approach was used to identify key parameters determining the abundance of Vibrio spp in marine samples from the Venetian Lagoon in Italy, which is an important area for fish farming and tourism. Multivariate techniques have been adopted to analyze the dataset: using PCA, it was shown that a relatively high proportion of the total variance in this area was mainly due to two independent variables, namely salinity and temperature. Using cluster analysis, it was possible to categorize different groups with homogeneous features as regards space ("stations") and time ("seasons") distribution, as well as to quantify the values of environmental variables and the Vibrio abundances in each category. Furthermore, integrating key environmental factors and bacterial concentration values, it was possible to identify levels of salinity and sea surface temperature which were optimal for Vibrio concentration in water, plankton, and sediment samples. The identification of key environmental variables conditioning Vibrio occurrence should facilitate ocean monitoring, making it possible to predict unexpected variations in marine microflora which determine possible public health risks in coastal areas.


Asunto(s)
Organismos Acuáticos/aislamiento & purificación , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Vibrio/clasificación , Vibrio/aislamiento & purificación , Clima , Italia , Plancton/microbiología , Salinidad , Microbiología del Agua
12.
Microbiol Res ; 263: 127140, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35931003

RESUMEN

Bacteria belonging to the genus Achromobacter are widely distributed in natural environments and have been recognized as emerging pathogens for their contribution to a wide range of human infections. In particular, patients with cystic fibrosis (CF) are the subjects most frequently colonized by Achromobacter spp., which can cause persistent infections in their respiratory tract. Although many clinical aspects and pathogenic mechanisms still remain to be elucidated, Achromobacter spp. have been a source of expanding interest in recent years. This review examines the current literature regarding Achromobacter spp. role in CF, focusing on taxonomy, prevalence in CF lung infections, genomic characteristics, and adaptation strategies including modifications of metabolism and virulence, acquisition of antibiotic resistance, exchange of mobile genetic elements and development of hypermutation.


Asunto(s)
Achromobacter denitrificans , Achromobacter , Fibrosis Quística , Infecciones por Bacterias Gramnegativas , Achromobacter/genética , Achromobacter denitrificans/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Pulmón , Prevalencia
13.
Antibiotics (Basel) ; 11(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36551353

RESUMEN

BACKGROUND: The presence of carbapenemase-producing bacteria (CPB) in animal hosts and along the food chain may result in the development of reservoirs for human infections. Several CPB strains isolated from animals have been reported, suggesting that transmission and dissemination of the corresponding genes between humans and animals may occur. Animal and food samples have complex backgrounds that hinder the detection of CPB present in low concentrations by standard detection procedures. METHODS: We evaluated the possibility of detecting blaKPC, blaVIM, and blaOXA-48-like carbapenemases in 286 animal and food samples (faeces from farm and companion animals, raw meat, bivalve molluscs) by culture-based and standard molecular methods and by ddPCR. RESULTS: The proposed ddPCR managed to detect the target genes, also in samples resulting negative to standard methods. While the presence of blaKPC and blaVIM was detected in few samples (~3%), one third of the samples (n = 94/283) carried different variants of blaOXA-48-like genes. CONCLUSION: A specific and sensitive method such as ddPCR could be suitable to evaluate the current veterinarian and environmental situation and to assess the dynamic transmission and persistence of CPB between animals and humans and vice versa.

14.
mSphere ; 6(3): e0030221, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34047653

RESUMEN

We report a novel IncHI2 plasmid coharboring blaVIM-1, two copies of blaKPC-3, and mcr-9.1 resistance genes in a human Escherichia coli isolate of the new serogroup O188. The blaVIM-1 gene was included in a class 1 integron, mcr-9.1 in a cassette bracketed by IS903 and ΔIS1R, and blaKPC-3 in two copies within a new composite Tn4401-like transposon. The emergence of carbapenem and colistin resistance genes in a single plasmid is of great concern for upcoming clinical therapies.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/clasificación
15.
Microb Genom ; 7(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292148

RESUMEN

Achromobacter species are increasingly being detected in cystic fibrosis (CF) patients, where they can establish chronic infections by adapting to the lower airway environment. To better understand the mechanisms contributing to a successful colonization by Achromobacter species, we sequenced the whole genome of 54 isolates from 26 patients with occasional and early/late chronic lung infection. We performed a phylogenetic analysis and compared virulence and resistance genes, genetic variants and mutations, and hypermutability mechanisms between chronic and occasional isolates. We identified five Achromobacter species as well as two non-affiliated genogroups (NGs). Among them were the frequently isolated Achromobacter xylosoxidans and four other species whose clinical importance is not yet clear: Achromobacter insuavis, Achromobacter dolens, Achromobacter insolitus and Achromobacter aegrifaciens. While A. insuavis and A. dolens were isolated only from chronically infected patients and A. aegrifaciens only from occasionally infected patients, the other species were found in both groups. Most of the occasional isolates lacked functional genes involved in invasiveness, chemotaxis, type 3 secretion system and anaerobic growth, whereas the great majority (>60%) of chronic isolates had these genomic features. Interestingly, almost all (n=22/23) late chronic isolates lacked functional genes involved in lipopolysaccharide production. Regarding antibiotic resistance, we observed a species-specific distribution of blaOXA genes, confirming what has been reported in the literature and additionally identifying blaOXA-2 in some A. insolitus isolates and observing no blaOXA genes in A. aegrifaciens or NGs. No significant difference in resistance genes was found between chronic and occasional isolates. The results of the mutator genes analysis showed that no occasional isolate had hypermutator characteristics, while 60% of early chronic (<1 year from first colonization) and 78% of late chronic (>1 year from first colonization) isolates were classified as hypermutators. Although all A. dolens, A. insuavis and NG isolates presented two different mutS genes, these seem to have a complementary rather than compensatory function. In conclusion, our results show that Achromobacter species can exhibit different adaptive mechanisms and some of these mechanisms might be more useful than others in establishing a chronic infection in CF patients, highlighting their importance for the clinical setting and the need for further studies on the less clinically characterized Achromobacter species.


Asunto(s)
Achromobacter/clasificación , Achromobacter/genética , Fibrosis Quística/microbiología , Genoma Bacteriano/genética , Infecciones por Bacterias Gramnegativas/microbiología , Infección Persistente/microbiología , Achromobacter/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Humanos , Pulmón/microbiología , Proteínas MutS/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma , beta-Lactamasas/genética
16.
Microorganisms ; 9(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430044

RESUMEN

Achromobacter spp. is an opportunistic pathogen that can cause lung infections in patients with cystic fibrosis (CF). Although a variety of mobile genetic elements (MGEs) carrying antimicrobial resistance genes have been identified in clinical isolates, little is known about the contribution of Achromobacter spp. mobilome to its pathogenicity. To provide new insights, we performed bioinformatic analyses of 54 whole genome sequences and investigated the presence of phages, insertion sequences (ISs), and integrative and conjugative elements (ICEs). Most of the detected phages were previously described in other pathogens and carried type II toxin-antitoxin systems as well as other pathogenic genes. Interestingly, the partial sequence of phage Bcep176 was found in all the analyzed Achromobacter xylosoxidans genome sequences, suggesting the integration of this phage in an ancestor strain. A wide variety of IS was also identified either inside of or in proximity to pathogenicity islands. Finally, ICEs carrying pathogenic genes were found to be widespread among our isolates and seemed to be involved in transfer events within the CF lung. These results highlight the contribution of MGEs to the pathogenicity of Achromobacter species, their potential to become antimicrobial targets, and the need for further studies to better elucidate their clinical impact.

17.
Pathogens ; 10(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34451442

RESUMEN

In the lungs of patients with cystic fibrosis (CF), the main pathogen Pseudomonas aeruginosa is often co-isolated with other microbes, likely engaging in inter-species interactions. In the case of chronic co-infections, this cohabitation can last for a long time and evolve over time, potentially contributing to the clinical outcome. Interactions involving the emerging pathogens Achromobacter spp. have only rarely been studied, reporting inhibition of P. aeruginosa biofilm formation. To evaluate the possible evolution of such interplay, we assessed the ability of Achromobacter spp. isolates to affect the biofilm formation of co-isolated P. aeruginosa strains during long-term chronic co-infections. We observed both competition and cohabitation. An Achromobacter sp. isolate secreted exoproducts interfering with the adhesion ability of a co-isolated P. aeruginosa strain and affected its biofilm formation. Conversely, a clonal Achromobacter sp. strain later isolated from the same patient, as well as two longitudinal strains from another patient, did not show similar competitive behavior against its P. aeruginosa co-isolates. Genetic variants supporting the higher virulence of the competitive Achromobacter sp. isolate were found in its genome. Our results confirm that both inter-species competition and cohabitation are represented during chronic co-infections in CF airways, and evolution of these interplays can happen even at the late stages of chronic infection.

18.
Infect Immun ; 78(7): 3280-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20479084

RESUMEN

Vibrio parahaemolyticus is an inhabitant of estuarine and marine environments that causes seafood-borne gastroenteritis worldwide. Recently, a type 3 secretion system (T3SS2) able to secrete and translocate virulence factors into the eukaryotic cell has been identified in a pathogenicity island (VP-PAI) located on the smaller chromosome. These virulence-related genes have previously been detected only in clinical strains. Classical virulence genes for this species (tdh, trh) are rarely detected in environmental strains, which are usually considered to lack virulence potential. However, during screening of a collection of environmental V. parahaemolyticus isolates obtained in the North Adriatic Sea in Italy, a number of marine strains carrying virulence-related genes, including genes involved in the T3SS2, were detected. In this study, we investigated the pathogenic potential of these marine V. parahaemolyticus strains by studying their adherence ability, their cytotoxicity, their effect on zonula occludin protein 1 (ZO-1) of the tight junctions, and their effect on transepithelial resistance (TER) in infected Caco-2 cells. By performing a reverse transcription-PCR, we also tested the expression of the T3SS2 genes vopT and vopB2, encoding an effector and a translocon protein, respectively. Our results indicate that, similarly to clinical strains, marine V. parahaemolyticus strains carrying vopT and vopB2 and that other genes included in the VP-PAI are capable of adhering to human cells and of causing cytoskeletal disruption and loss of membrane integrity in infected cells. On the basis of data presented here, environmental V. parahaemolyticus strains should be included in coastal water surveillance plans, as they may represent a risk for human health.


Asunto(s)
Vibriosis/microbiología , Vibrio parahaemolyticus/fisiología , Adhesión Bacteriana/fisiología , Células CACO-2 , Permeabilidad de la Membrana Celular/fisiología , Expresión Génica/fisiología , Genes Bacterianos/genética , Humanos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Uniones Estrechas/fisiología , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidad
19.
Mar Pollut Bull ; 154: 111057, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32174504

RESUMEN

The aquatic environment can represent a reservoir of antimicrobial resistance genes. In the present study, phenotypical, biochemical and molecular techniques were used to screen a collection of marine strains isolated in Italian aquaculture farms to investigate their beta-lactam resistance profiles. The genome of 12 carbapenemase and/or beta-lactamase producing strains was sequenced and a phylogenetic analysis of the beta-lactamases found in their chromosomes was performed. Gene annotation and prediction revealed the presence of blaAmpC and blaOXA-55-like in all the Shewanella algae isolates whereas in Vibrio anguillarum and Vibrio parahaemolyticus strains, blaAmpC and blaCARB-19 were found, respectively. Multiple alignments of OXA-55-like and AmpC protein sequences showed different point mutations. Finally, comparisons between enzyme phylogeny and strain clusterization based on sampling sites and dates indicate the diffusion of specific Multi Drug Resistant (MDR) Shewanella algae clones along the Italian Adriatic coast.


Asunto(s)
Acuicultura , Farmacorresistencia Bacteriana/genética , Exposición a Riesgos Ambientales/estadística & datos numéricos , Vibrio , Antibacterianos , Genes Bacterianos , Humanos , Italia , Pruebas de Sensibilidad Microbiana , Filogenia , Shewanella , beta-Lactamasas
20.
Microorganisms ; 8(4)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326629

RESUMEN

Antimicrobial resistance is a major public health concern restricted not only to healthcare settings but also to veterinary and environmental ones. In this study, we analyzed, by whole genome sequencing (WGS) the resistome, mobilome and virulome of 12 multidrug-resistant (MDR) marine strains belonging to Shewanellaceae and Vibrionaceae families collected at aquaculture centers in Italy. The results evidenced the presence of several resistance mechanisms including enzyme and efflux pump systems conferring resistance to beta-lactams, quinolones, tetracyclines, macrolides, polymyxins, chloramphenicol, fosfomycin, erythromycin, detergents and heavy metals. Mobilome analysis did not find circular elements but class I integrons, integrative and conjugative element (ICE) associated modules, prophages and different insertion sequence (IS) family transposases. These mobile genetic elements (MGEs) are usually present in other aquatic bacteria but also in Enterobacteriaceae suggesting their transferability among autochthonous and allochthonous bacteria of the resilient microbiota. Regarding the presence of virulence factors, hemolytic activity was detected both in the Shewanella algae and in Vibrio spp. strains. To conclude, these data indicate the role as a reservoir of resistance and virulence genes in the environment of the aquatic microbiota present in the examined Italian fish farms that potentially might be transferred to bacteria of medical interest.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda