Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2306507120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37983483

RESUMEN

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality-reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period-we estimate a potential of 41 to 50 Mt net additional annual CO2 uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.


Asunto(s)
Ecosistema , Aerosoles y Gotitas Respiratorias , Humanos , Aerosoles/análisis , Clorofila/análisis , Polvo/análisis , Fluorescencia , Fotosíntesis
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888583

RESUMEN

Improving compliance with environmental regulations is critical for promoting clean environments and healthy populations. In South Asia, brick manufacturing is a major source of pollution but is dominated by small-scale, informal producers who are difficult to monitor and regulate-a common challenge in low-income settings. We demonstrate a low-cost, scalable approach for locating brick kilns in high-resolution satellite imagery from Bangladesh. Our approach identifies kilns with 94.2% accuracy and 88.7% precision and extracts the precise GPS coordinates of every brick kiln across Bangladesh. Using these estimates, we show that at least 12% of the population of Bangladesh (>18 million people) live within 1 km of a kiln and that 77% and 9% of kilns are (illegally) within 1 km of schools and health facilities, respectively. Finally, we show how kilns contribute up to 20.4 µg/[Formula: see text] of [Formula: see text] (particulate matter of a diameter less than 2.5 µm) in Dhaka when the wind blows from an unfavorable direction. We document inaccuracies and potential bias with respect to local regulations in the government data. Our approach demonstrates how machine learning and Earth observation can be combined to better understand the extent and implications of regulatory compliance in informal industry.


Asunto(s)
Monitoreo del Ambiente/métodos , Adhesión a Directriz/tendencias , Procesamiento de Imagen Asistido por Computador/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Asia , Bangladesh , Monóxido de Carbono/análisis , Conservación de los Recursos Naturales/métodos , Aprendizaje Profundo , Contaminación Ambiental/análisis , Humanos , Industrias , Material Particulado/análisis , Imágenes Satelitales/métodos
3.
Glob Chang Biol ; 29(3): 794-807, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36345737

RESUMEN

Cover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields. It remains unclear, though, how recent cover crop adoption has affected productivity in commercial agricultural systems. Here we perform the first large-scale, field-level analysis of observed yield impacts from cover cropping as implemented across the US Corn Belt. We use validated satellite data products at sub-field scales to analyze maize and soybean yield outcomes for over 90,000 fields in 2019-2020. Because we lack data on cover crop species or timing, we seek to quantify the yield impacts of cover cropping as currently practiced in aggregate. Using causal forests analysis, we estimate an average maize yield loss of 5.5% on fields where cover crops were used for 3 or more years, compared with fields that did not adopt cover cropping. Maize yield losses were larger on fields with better soil ratings, cooler mid-season temperatures, and lower spring rainfall. For soybeans, average yield losses were 3.5%, with larger impacts on fields with warmer June temperatures, lower spring and late-season rainfall, and, to a lesser extent, better soils. Estimated impacts are consistent with multiple mechanisms indicated by experimental and simulation-based studies, including the effects of cover crops on nitrogen dynamics, water consumption, and soil oxygen depletion. Our results suggest a need to improve cover crop management to reduce yield penalties, and a potential need to target subsidies based on likely yield impacts. Ultimately, avoiding substantial yield penalties is important for realizing widespread adoption and associated benefits for water quality, erosion, soil carbon, and greenhouse gas emissions.


Asunto(s)
Suelo , Zea mays , Estados Unidos , Glycine max , Ecosistema , Carbono , Agricultura/métodos , Productos Agrícolas
4.
Environ Sci Technol ; 57(45): 17588-17597, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37909918

RESUMEN

Recycling nutrients from wastewater could simultaneously decrease the carbon intensity of traditional ammonia supply chains and increase the accessibility of local fertilizer. Despite the theoretical potential, techno-economic viability of wastewater nutrient recovery in sub-Saharan Africa has been poorly characterized at subnational scales. This work proposes a multicriteria suitability index to describe techno-economic viability of wastewater-derived fertilizer technologies with district-scale resolution. This index, with a range from 0 to 1 (highest suitability), incorporates key drivers, including population density, soil conditions, sanitation levels, and fertilizer prices. We found that suitability varies widely within and across countries in sub-Saharan Africa and that the primary limiting factor is the absence of sanitation infrastructure. Regions with a minimum of 10% cropland area and a suitability index of at least 0.9 were identified as highly suitable target regions for initial deployment. While they comprise only 1% of the analyzed area, these regions are home to 39 million people and contain up to 3.7 million hectares of cropland. Wastewater-derived fertilizer technologies could deliver an average of 25 kg of nitrogen per hectare of cropland, generating additional food equivalent to the annual consumption of 6 million people. Screening for high suitability can inform selection of effective lighthouse demonstration sites that derisk technology deployment and promote the transition to a more circular nutrient economy.


Asunto(s)
Fertilizantes , Aguas Residuales , Humanos , Suelo , Amoníaco/análisis , Densidad de Población , Nitrógeno/análisis
5.
Glob Chang Biol ; 26(5): 2729-2730, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32073716

RESUMEN

Anthropogenic climate change likely influences the beginning of 2020 growing season's water deficit in parts of southern Africa, with severe consequences to food security.


Asunto(s)
Cambio Climático , Abastecimiento de Alimentos , África Austral , Estaciones del Año , Agua
6.
Proc Natl Acad Sci U S A ; 114(9): 2189-2194, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28202728

RESUMEN

The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest ([Formula: see text] up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods.

7.
Proc Natl Acad Sci U S A ; 114(35): 9326-9331, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28811375

RESUMEN

Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.


Asunto(s)
Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Calor , Modelos Biológicos , Poaceae/crecimiento & desarrollo
8.
PLoS Med ; 15(7): e1002586, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29969442

RESUMEN

BACKGROUND: Rising atmospheric carbon dioxide concentrations are anticipated to decrease the zinc and iron concentrations of crops. The associated disease burden and optimal mitigation strategies remain unknown. We sought to understand where and to what extent increasing carbon dioxide concentrations may increase the global burden of nutritional deficiencies through changes in crop nutrient concentrations, and the effects of potential mitigation strategies. METHODS AND FINDINGS: For each of 137 countries, we incorporated estimates of climate change, crop nutrient concentrations, dietary patterns, and disease risk into a microsimulation model of zinc and iron deficiency. These estimates were obtained from the Intergovernmental Panel on Climate Change, US Department of Agriculture, Statistics Division of the Food and Agriculture Organization of the United Nations, and Global Burden of Disease Project, respectively. In the absence of increasing carbon dioxide concentrations, we estimated that zinc and iron deficiencies would induce 1,072.9 million disability-adjusted life years (DALYs) globally over the period 2015 to 2050 (95% credible interval [CrI]: 971.1-1,167.7). In the presence of increasing carbon dioxide concentrations, we estimated that decreasing zinc and iron concentrations of crops would induce an additional 125.8 million DALYs globally over the same period (95% CrI: 113.6-138.9). This carbon-dioxide-induced disease burden is projected to disproportionately affect nations in the World Health Organization's South-East Asia and African Regions (44.0 and 28.5 million DALYs, respectively), which already have high existing disease burdens from zinc and iron deficiencies (364.3 and 299.5 million DALYs, respectively), increasing global nutritional inequalities. A climate mitigation strategy such as the Paris Agreement (an international agreement to keep global temperatures within 2°C of pre-industrial levels) would be expected to avert 48.2% of this burden (95% CrI: 47.8%-48.5%), while traditional public health interventions including nutrient supplementation and disease control programs would be expected to avert 26.6% of the burden (95% CrI: 23.8%-29.6%). Of the traditional public health interventions, zinc supplementation would be expected to avert 5.5%, iron supplementation 15.7%, malaria mitigation 3.2%, pneumonia mitigation 1.6%, and diarrhea mitigation 0.5%. The primary limitations of the analysis include uncertainty regarding how food consumption patterns may change with climate, how disease mortality rates will change over time, and how crop zinc and iron concentrations will decline from those at present to those in 2050. CONCLUSIONS: Effects of increased carbon dioxide on crop nutrient concentrations are anticipated to exacerbate inequalities in zinc and iron deficiencies by 2050. Proposed Paris Agreement strategies are expected to be more effective than traditional public health measures to avert the increased inequality.


Asunto(s)
Dióxido de Carbono/efectos adversos , Simulación por Computador , Productos Agrícolas/metabolismo , Enfermedades Carenciales/epidemiología , Abastecimiento de Alimentos , Salud Global , Deficiencias de Hierro , Zinc/deficiencia , Atmósfera , Dióxido de Carbono/metabolismo , Cambio Climático , Comorbilidad , Productos Agrícolas/crecimiento & desarrollo , Enfermedades Carenciales/diagnóstico , Enfermedades Carenciales/metabolismo , Enfermedades Carenciales/prevención & control , Evaluación de la Discapacidad , Monitoreo del Ambiente , Conducta Alimentaria , Humanos , Estado Nutricional , Valor Nutritivo , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
9.
Glob Chang Biol ; 24(2): e522-e533, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29110424

RESUMEN

Elevated atmospheric CO2 concentrations ([CO2 ]) are expected to increase C3 crop yield through the CO2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Sequías , Glycine max/crecimiento & desarrollo , Agricultura , Medio Oeste de Estados Unidos
10.
Glob Chang Biol ; 24(10): 4718-4730, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29901245

RESUMEN

A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. Using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security.


Asunto(s)
Agricultura , Grano Comestible/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Cambio Climático , Sequías , Abastecimiento de Alimentos , Predicción , Calor
11.
Proc Natl Acad Sci U S A ; 112(9): 2670-5, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691735

RESUMEN

Europe has experienced a stagnation of some crop yields since the early 1990s as well as statistically significant warming during the growing season. Although it has been argued that these two are causally connected, no previous studies have formally attributed long-term yield trends to a changing climate. Here, we present two statistical tests based on the distinctive spatial pattern of climate change impacts and adaptation, and explore their power under a range of parameter values. We show that statistical power for the identification of climate change impacts is high in many settings, but that power for identifying adaptation is almost always low. Applying these tests to European agriculture, we find evidence that long-term temperature and precipitation trends since 1989 have reduced continent-wide wheat and barley yields by 2.5% and 3.8%, respectively, and have slightly increased maize and sugar beet yields. These averages disguise large heterogeneity across the continent, with regions around the Mediterranean experiencing significant adverse impacts on most crops. This result means that climate trends can account for ∼ 10% of the stagnation in European wheat and barley yields, with likely explanations for the remainder including changes in agriculture and environmental policies.


Asunto(s)
Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Modelos Biológicos , Productos Agrícolas/economía , Europa (Continente) , Factores de Tiempo
12.
Glob Chang Biol ; 23(6): 2464-2472, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27860004

RESUMEN

Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production.


Asunto(s)
Calor , Triticum/crecimiento & desarrollo , Agricultura , Grano Comestible , India , Temperatura
13.
Glob Chang Biol ; 22(2): 716-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26490834

RESUMEN

Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Comunicaciones por Satélite , Clorofila/metabolismo , Clima , Productos Agrícolas/metabolismo , Fluorescencia , Fotosíntesis , Lluvia , Luz Solar , Temperatura , Estados Unidos
14.
Glob Chang Biol ; 21(11): 4115-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26152643

RESUMEN

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Sequías , Calor , Sorghum/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Nueva Gales del Sur , Queensland , Estaciones del Año
15.
Environ Sci Technol ; 48(5): 3021-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24467248

RESUMEN

Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large solar installations. However, for efficient power generation, solar infrastructures use large amounts of water for construction and operation. We investigated the water use and greenhouse gas (GHG) emissions associated with solar installations in North American deserts in comparison to agave-based biofuel production, another widely promoted potential energy source from arid systems. We determined the uncertainty in our analysis by a Monte Carlo approach that varied the most important parameters, as determined by sensitivity analysis. We considered the uncertainty in our estimates as a result of variations in the number of solar modules ha(-1), module efficiency, number of agave plants ha(-1), and overall sugar conversion efficiency for agave. Further, we considered the uncertainty in revenue and returns as a result of variations in the wholesale price of electricity and installation cost of solar photovoltaic (PV), wholesale price of agave ethanol, and cost of agave cultivation and ethanol processing. The life-cycle analyses show that energy outputs and GHG offsets from solar PV systems, mean energy output of 2405 GJ ha(-1) year(-1) (5 and 95% quantile values of 1940-2920) and mean GHG offsets of 464 Mg of CO2 equiv ha(-1) year(-1) (375-562), are much larger than agave, mean energy output from 206 (171-243) to 61 (50-71) GJ ha(-1) year(-1) and mean GHG offsets from 18 (14-22) to 4.6 (3.7-5.5) Mg of CO2 equiv ha(-1) year(-1), depending upon the yield scenario of agave. Importantly though, water inputs for cleaning solar panels and dust suppression are similar to amounts required for annual agave growth, suggesting the possibility of integrating the two systems to maximize the efficiency of land and water use to produce both electricity and liquid fuel. A life-cycle analysis of a hypothetical colocation indicated higher returns per m(3) of water used than either system alone. Water requirements for energy production were 0.22 L MJ(-1) (0.28-0.19) and 0.42 L MJ(-1) (0.52-0.35) for solar PV-agave (baseline yield) and solar PV-agave (high yield), respectively. Even though colocation may not be practical in all locations, in some water-limited areas, colocated solar PV-agave systems may provide attractive economic incentives in addition to efficient land and water use.


Asunto(s)
Agave , Biocombustibles , Etanol , Energía Solar , Contaminantes Atmosféricos/análisis , Biocombustibles/economía , Dióxido de Carbono/análisis , Costos y Análisis de Costo , Clima Desértico , Etanol/economía , Método de Montecarlo , América del Norte , Energía Solar/economía , Agua
16.
Proc Natl Acad Sci U S A ; 108(11): 4307-12, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368189

RESUMEN

Biomass-derived energy offers the potential to increase energy security while mitigating anthropogenic climate change, but a successful path toward increased production requires a thorough accounting of costs and benefits. Until recently, the efficacy of biomass-derived energy has focused primarily on biogeochemical consequences. Here we show that the biogeophysical effects that result from hypothetical conversion of annual to perennial bioenergy crops across the central United States impart a significant local to regional cooling with considerable implications for the reservoir of stored soil water. This cooling effect is related mainly to local increases in transpiration, but also to higher albedo. The reduction in radiative forcing from albedo alone is equivalent to a carbon emissions reduction of , which is six times larger than the annual biogeochemical effects that arise from offsetting fossil fuel use. Thus, in the near-term, the biogeophysical effects are an important aspect of climate impacts of biofuels, even at the global scale. Locally, the simulated cooling is sufficiently large to partially offset projected warming due to increasing greenhouse gases over the next few decades. These results demonstrate that a thorough evaluation of costs and benefits of bioenergy-related land-use change must include potential impacts on the surface energy and water balance to comprehensively address important concerns for local, regional, and global climate change.


Asunto(s)
Biocombustibles/análisis , Clima , Productos Agrícolas/fisiología , Simulación por Computador , Factores de Tiempo , Estados Unidos
17.
Proc Biol Sci ; 280(1752): 20122190, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23222442

RESUMEN

Genetic improvements in heat tolerance of wheat provide a potential adaptation response to long-term warming trends, and may also boost yields in wheat-growing areas already subject to heat stress. Yet there have been few assessments of recent progress in breeding wheat for hot environments. Here, data from 25 years of wheat trials in 76 countries from the International Maize and Wheat Improvement Center (CIMMYT) are used to empirically model the response of wheat to environmental variation and assess the genetic gains over time in different environments and for different breeding strategies. Wheat yields exhibited the most sensitivity to warming during the grain-filling stage, typically the hottest part of the season. Sites with high vapour pressure deficit (VPD) exhibited a less negative response to temperatures during this period, probably associated with increased transpirational cooling. Genetic improvements were assessed by using the empirical model to correct observed yield growth for changes in environmental conditions and management over time. These 'climate-corrected' yield trends showed that most of the genetic gains in the high-yield-potential Elite Spring Wheat Yield Trial (ESWYT) were made at cooler temperatures, close to the physiological optimum, with no evidence for genetic gains at the hottest temperatures. In contrast, the Semi-Arid Wheat Yield Trial (SAWYT), a lower-yielding nursery targeted at maintaining yields under stressed conditions, showed the strongest genetic gains at the hottest temperatures. These results imply that targeted breeding efforts help us to ensure progress in building heat tolerance, and that intensified (and possibly new) approaches are needed to improve the yield potential of wheat in hot environments in order to maintain global food security in a warmer climate.


Asunto(s)
Cruzamiento , Triticum/genética , Aclimatación , Clima Desértico , Ambiente , Calor , Modelos Biológicos , Análisis de Regresión , Estaciones del Año
18.
Plant Cell Environ ; 36(3): 697-705, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22943419

RESUMEN

Plants grown in elevated [CO(2) ] have lower protein and mineral concentrations compared with plants grown in ambient [CO(2) ]. Dilution by enhanced production of carbohydrates is a likely cause, but it cannot explain all of the reductions. Two proposed, but untested, hypotheses are that (1) reduced canopy transpiration reduces mass flow of nutrients to the roots thus reducing nutrient uptake and (2) changes in metabolite or enzyme concentrations caused by physiological changes alter requirements for minerals as protein cofactors or in other organic complexes, shifting allocation between tissues and possibly altering uptake. Here, we use the meta-analysis of previous studies in crops to test these hypotheses. Nutrients acquired mostly by mass flow were decreased significantly more by elevated [CO(2) ] than nutrients acquired by diffusion to the roots through the soil, supporting the first hypothesis. Similarly, Mg showed large concentration declines in leaves and wheat stems, but smaller decreases in other tissues. Because chlorophyll requires a large fraction of total plant Mg, and chlorophyll concentration is reduced by growth in elevated [CO(2) ], this supports the second hypothesis. Understanding these mechanisms may guide efforts to improve nutrient content, and allow modeling of nutrient changes and health impacts under future climate change scenarios.


Asunto(s)
Dióxido de Carbono/fisiología , Productos Agrícolas/metabolismo , Raíces de Plantas/metabolismo , Transpiración de Plantas , Minerales/metabolismo , Proteínas de Plantas/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(26): 12052-7, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20551223

RESUMEN

As efforts to mitigate climate change increase, there is a need to identify cost-effective ways to avoid emissions of greenhouse gases (GHGs). Agriculture is rightly recognized as a source of considerable emissions, with concomitant opportunities for mitigation. Although future agricultural productivity is critical, as it will shape emissions from conversion of native landscapes to food and biofuel crops, investment in agricultural research is rarely mentioned as a mitigation strategy. Here we estimate the net effect on GHG emissions of historical agricultural intensification between 1961 and 2005. We find that while emissions from factors such as fertilizer production and application have increased, the net effect of higher yields has avoided emissions of up to 161 gigatons of carbon (GtC) (590 GtCO(2)e) since 1961. We estimate that each dollar invested in agricultural yields has resulted in 68 fewer kgC (249 kgCO(2)e) emissions relative to 1961 technology ($14.74/tC, or approximately $4/tCO(2)e), avoiding 3.6 GtC (13.1 GtCO(2)e) per year. Our analysis indicates that investment in yield improvements compares favorably with other commonly proposed mitigation strategies. Further yield improvements should therefore be prominent among efforts to reduce future GHG emissions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda