Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Public Health Manag Pract ; 17(3): 248-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21464687

RESUMEN

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) implemented state and district surveillance nodes in a central aggregated node in the National Capital Region (NCR). Within this network, de-identified health information is integrated with other indicator data and is made available to local and state health departments for enhanced disease surveillance. Aggregated data made available to the central node enable public health practitioners to observe abnormal behavior of health indicators spanning jurisdictions and view geographical spread of outbreaks across regions.Forming a steering committee, the NCR Enhanced Surveillance Operating Group (ESOG), was key to overcoming several data-sharing issues. The committee was composed of epidemiologists and key public health practitioners from the 3 jurisdictions. The ESOG facilitated early system development and signing of the cross-jurisdictional data-sharing agreement. This agreement was the first of its kind at the time and provided the legal foundation for sharing aggregated health information across state/district boundaries for electronic disease surveillance.Electronic surveillance system for the early notification of community-based epidemics provides NCR users with a comprehensive regional view to ascertain the spread of disease, estimate resource needs, and implement control measures. This article aims to describe the creation of the NCR Disease Surveillance Network as an exceptional example of cooperation and potential that exists for regional surveillance activities.


Asunto(s)
Redes Comunitarias/organización & administración , Conducta Cooperativa , Brotes de Enfermedades , Vigilancia de la Población/métodos , Informática en Salud Pública/organización & administración , Recolección de Datos , District of Columbia , Personal de Salud , Humanos , Maryland , Virginia
2.
PLoS One ; 6(5): e19750, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21572957

RESUMEN

Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES) is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.


Asunto(s)
Países en Desarrollo , Electrónica , Vigilancia de la Población/métodos , Programas Informáticos , Difusión de la Información , Factores de Tiempo
3.
Biomed Inform Insights ; 2: 31-41, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-27325909

RESUMEN

Automated disease surveillance systems are becoming widely used by the public health community. However, communication among non-collocated and widely dispersed users still needs improvement. A web-based software tool for enhancing user communications was completely integrated into an existing automated disease surveillance system and was tested during two simulated exercises and operational use involving multiple jurisdictions. Evaluation of this tool was conducted by user meetings, anonymous surveys, and web logs. Public health officials found this tool to be useful, and the tool has been modified further to incorporate features suggested by user responses. Features of the automated disease surveillance system, such as alerts and time series plots, can be specifically referenced by user comments. The user may also indicate the alert response being considered by adding a color indicator to their comment. The web-based event communication tool described in this article provides a common ground for collaboration and communication among public health officials at different locations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda