Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203584

RESUMEN

Leishmaniases are neglected diseases with limited therapeutic options. Diffuse cutaneous leishmaniasis can occur in Brazil due to Leishmania amazonensis. This study details the antileishmanial activity and cytotoxicity of complexes of sodium usnate (SAU) with lanthanide ions ([LnL3 (H2O)x] (Ln = La(III), Nd(III), Gd(III), Tb(III), Eu(III) and Sm(III); L = SAU). All lanthanide complexes were highly active and more potent than SAU against L. amazonensis promastigotes and intracellular amastigotes (Pro: IC50 < 1.50 µM; Ama: IC50 < 7.52 µM). EuL3·3H2O and NdL3·3H2O were the most selective and effective on intracellular amastigotes, with a selectivity index of approximately 7.0. In silico predictions showed no evidence of mutagenicity, tumorigenicity or irritation for all complexes. Treatment with EuL3·3H2O triggered NO release even at the lowest concentration, indicating NO production as a mechanism of action against the parasite. Incubating promastigotes with the lanthanide complexes, particularly with SmL3·4H2O and GdL3·3H2O, led to a change in the mitochondrial membrane potential, indicating the ability of these complexes to target this essential organelle. The same complexes caused cell death through cell membrane disruption, but their relationship with early or late apoptotic processes remains unclear. Thus, the inclusion of lanthanide ions in SAU improves selectivity with a promising mechanism of action targeting the mitochondria.


Asunto(s)
Antiprotozoarios , Elementos de la Serie de los Lantanoides , Antiprotozoarios/farmacología , Compuestos Heterocíclicos con 3 Anillos , Iones , Elementos de la Serie de los Lantanoides/farmacología
2.
Metabolomics ; 19(1): 2, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542160

RESUMEN

INTRODUCTION: Selaginellins are specialized metabolites and chemotaxonomic markers for Selaginella species. Despite the growing interest in these compounds as a result of their bioactivities, they are accumulated at low levels in the plant. Hence, their isolation and chemical characterization are often difficult, time consuming, and limiting for biological tests. Elicitation with the phytohormone methyl jasmonate (MeJA) could be a strategy to increase the content of selaginellins addressing their low availability problem, that also impairs pharmacological investigations. MATHERIALS AND METHODS: In this study, we examined MeJA elicitation in Selaginella convoluta plants, a medicinal plant found in northeastern Brazil, by treating them with two different concentrations (MeJA: 50 and 100 µM), followed by chemical profiling after 12, 24 and 48 h after application. Samples were harvested and analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RESULTS AND DISCUSSCION: MeJA treatment significantly impacted the chemical phenotype. Regarding shoots differences in the time-dependent increased accumulation of all metabolites when plants were subjected to 100 µM MeJA were observed while in roots, most metabolites had their concentrations decreased in a time-dependent fashion at the same conditions. Results support organ, MeJA concentration and time post-treatment dependence of specialized metabolite accumulation, mainly the flavonoids and selaginellins. The amount of Selaginellin G in shoots of MeJA-treated specimens increased in 5.63-fold relative to control. The molecular networking approach allowed for the putative annotation of 64 metabolites, among them, the MeJA treatment followed by targeted metabolome analysis also allowed to annotate seven unprecedented selaginellins. Additionally, the in silico bioactive potential of the annotated selaginellins highlighted targets related to neurodegenerative disorders, antiproliferative, and antiparasitic issues. Taken together, data point out MeJA exposure as a strategy to induce potentially bioactive selaginellins accumulation in S. convoluta, this approach could enable a deep investigation about the metabolic function of these metabolites in the genus as well as regarding pharmacological exploration of the undervalued potential.


Asunto(s)
Selaginellaceae , Selaginellaceae/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolómica
3.
Mol Divers ; 25(4): 2219-2235, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32557280

RESUMEN

Chagas disease kills over 10,000 people per year, and approximately 8 million people are infected by Trypanosoma cruzi. The reference drug for treatment of the disease, benznidazole, is the same since the 70s. In recent years, many CYP51 inhibitors were tested against this parasite's target. One of them, posaconazole, was even tested in clinical trials that unfortunately were not successful. Nevertheless, there are still many evidences that CYP51 is a great potential target to treat T. cruzi infection. The research for new effective molecules that can cure the chronic phase of the disease is essential. 2D and 3D-quantitative structure activity relationship (QSAR) studies were conducted in this work to create three QSAR models using the chemical structures of 197 published compounds that already went through either in vivo or in vitro tests. After the analysis of the models, new analogues not yet synthesized were suggested here and had their biological activity and synthetic availability assessed.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Inhibidores de 14 alfa Desmetilasa
4.
Planta Med ; 87(1-02): 177-186, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33176378

RESUMEN

Tropane alkaloids are specialized plant metabolites mostly found in the Erythroxylaceae and Solanaceae families. Although tropane alkaloids have a high degree of structural similarity because of the tropane ring, their pharmacological actions are quite distinct. Brazil is one of the main hotspots of Erythroxylum spp. diversity with 123 species (almost 66% of the species catalogued in tropical America). Erythroxylum pungens occurs in the Caatinga, a promising biome that provides bioactive compounds, including tropane alkaloids. As part of our efforts to investigate this species, 15 alkaloids in specimens harvested under different environmental conditions are presented herein. The occurrence of 3-(2-methylbutyryloxy)tropan-6,7-diol in the stem bark of plants growing in their natural habitat, greenhouse controlled conditions, and after a period of water restriction, suggests that it is a potential chemical marker for the species. This alkaloid was evaluated for several parameters in zebrafish (Danio rerio) as a model organism. Regarding toxicity, teratogenic effects were observed at 19.5 µM and the lethal dose for embryos was 18.4 µM. No mortality was observed in adults, but a behavioral screen showed psychostimulatory action at 116.7 µM. Overall, the alkaloid was able to cause zebrafish behavioral changes, prompting further investigation of its potential as a new molecule in the treatment of depression-like symptoms. In silico, targets involved in antidepressant pathways were identified by docking.


Asunto(s)
Alcaloides , Erythroxylaceae , Alcaloides/farmacología , Animales , Brasil , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular , Tropanos , Pez Cebra
5.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576044

RESUMEN

α,ß-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and ß-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Triterpenos/farmacología , beta-Ciclodextrinas/farmacología , Animales , Rastreo Diferencial de Calorimetría , Simulación por Computador , Inhibidores Enzimáticos/química , Lipasa/química , Orlistat/farmacología , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Porcinos , Triterpenos/síntesis química , Triterpenos/química , Difracción de Rayos X , beta-Ciclodextrinas/química
6.
Bioorg Chem ; 101: 104017, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32629276

RESUMEN

Diaryl disulfides and diaryl thiosulfonates were synthesized with the two phenyl rings of all compounds bearing identical halide substituents. Because of structural similarity to the potent antimitotic natural product combretastatin A-4 (CA-4), the compounds were examined for inhibition of tubulin polymerization, and the thiosulfonates were more active than the disulfides. The nine thiosulfonates had IC50 values ranging from 1.2 to 9.1 µM, as compared with 1.3 µM obtained with CA-4. The compounds thus ranged from equipotent with CA-4 to 7-fold less active. The nine disulfides had IC50 values ranging from 1.2 to 5.1 µM, as compared with 0.54 µM obtained with CA-4. The compounds thus ranged from less than half as active as CA-4 to over 9-fold less active. The most active members of each group, 2 g and 3c, in the assembly assay were modeled into the colchicine site. Compound 3c had significant hydrophobic interactions with ß-tubulin residues CYS 241 and ALA 250, and its thiosulfonate bridge made a hydrogen bond with ß-tubulin residue ASN 258. Compound 2 g had hydrophobic interactions with ß-tubulin residues ALA 250, CYS 241 and ALA 254, but there was no significant interaction of the disulfide bridge with tubulin.


Asunto(s)
Bibencilos/química , Proliferación Celular/efectos de los fármacos , Disulfuros/síntesis química , Disulfuros/farmacología , Ácidos Tiosulfónicos/síntesis química , Ácidos Tiosulfónicos/farmacología , Moduladores de Tubulina/farmacología , Línea Celular Tumoral , Disulfuros/química , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Ácidos Tiosulfónicos/química
7.
Microorganisms ; 11(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36677517

RESUMEN

Leishmaniasis is a neglected tropical disease, affecting more than 350 million people globally. However, there is currently no vaccine available against human leishmaniasis, and current treatment is hampered by high cost, side-effects, and painful administration routes. It has become a United Nations goal to end leishmaniasis epidemics by 2030, and multitarget drug strategy emerges as a promising alternative. Among the multitarget compounds, flavonoids are a renowned class of natural products, and a structurally diverse library can be prepared through organic synthesis, which can be tested for biological effectiveness. In this study, we synthesised 17 flavonoid analogues using a scalable, easy-to-reproduce, and inexpensive method. All synthesised compounds presented an impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y enzymes, which are highly expressed in the amastigote stage, the target form of the parasite. Compounds 3c, f12a, and f12b were found to be effective against all isoforms. Furthermore, their intermolecular interactions were also investigated through a molecular modelling study. These compounds were highly potent against the parasite and demonstrated low cytotoxic action against mammalian cells. These results are pioneering, representing an advance in the investigation of the mechanisms behind the antileishmanial action of flavonoid derivatives. Moreover, compounds have been shown to be promising leads for the design of other cysteine protease inhibitors for the treatment of leishmaniasis diseases.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda