Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
EMBO Rep ; 22(2): e50218, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369848

RESUMEN

Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.


Asunto(s)
Neovascularización Fisiológica , Fosfoinosítido Fosfatasas , Fosfoproteínas Fosfatasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Células Endoteliales/metabolismo , Ratones , Fosfatidilinositol 4,5-Difosfato , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37651195

RESUMEN

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Asunto(s)
Permeabilidad Capilar , Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Permeabilidad Capilar/genética , Carcinoma de Células Renales/inmunología , Neoplasias Renales/inmunología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Fosforilación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo
3.
Elife ; 102021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908348

RESUMEN

Background: Hypoxia and consequent production of vascular endothelial growth factor A (VEGFA) promote blood vessel leakiness and edema in ocular diseases. Anti-VEGFA therapeutics may aggravate hypoxia; therefore, therapy development is needed. Methods: Oxygen-induced retinopathy was used as a model to test the role of nitric oxide (NO) in pathological neovascularization and vessel permeability. Suppression of NO formation was achieved chemically using L-NMMA, or genetically, in endothelial NO synthase serine to alanine (S1176A) mutant mice. Results: Suppression of NO formation resulted in reduced retinal neoangiogenesis. Remaining vascular tufts exhibited reduced vascular leakage through stabilized endothelial adherens junctions, manifested as reduced phosphorylation of vascular endothelial (VE)-cadherin Y685 in a c-Src-dependent manner. Treatment with a single dose of L-NMMA in established retinopathy restored the vascular barrier and prevented leakage. Conclusions: We conclude that NO destabilizes adheren junctions, resulting in vascular hyperpermeability, by converging with the VEGFA/VEGFR2/c-Src/VE-cadherin pathway. Funding: This study was supported by the Swedish Cancer foundation (19 0119 Pj ), the Swedish Research Council (2020-01349), the Knut and Alice Wallenberg foundation (KAW 2020.0057) and a Fondation Leducq Transatlantic Network of Excellence Grant in Neurovascular Disease (17 CVD 03). KAW also supported LCW with a Wallenberg Scholar grant (2015.0275). WCS was supported by Grants R35 HL139945, P01 HL1070205, AHA MERIT Award. DV was supported by grants from the Deutsche Forschungsgemeinschaft, SFB1450, B03, and CRU342, P2.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Cadherinas/química , Cadherinas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Enfermedades de la Retina/enzimología , Tirosina/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos CD/genética , Proteína Tirosina Quinasa CSK/genética , Cadherinas/genética , Permeabilidad Capilar , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Redox Biol ; 36: 101602, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32570189

RESUMEN

A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN-), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN- therapeutically in different disease settings. Unlike HOCl, HOSCN can be detoxified by thioredoxin reductase, and reacts selectively with thiols to result in reversible modifications, which could potentially reduce the extent of MPO-induced damage during chronic inflammation. In this study, we show that exposure of macrophages, a key inflammatory cell type, to HOSCN results in the reversible modification of multiple mitochondrial proteins, leading to increased mitochondrial membrane permeability, decreased oxidative phosphorylation and reduced formation of ATP. The increased permeability and reduction in ATP could be reversed by pre-treatment of the macrophages with cyclosporine A, implicating a role for the mitochondrial permeability transition pore. HOSCN also drives cells to utilise fatty acids as an energetic substrate after the inhibition of oxidative phosphorylation. Raman imaging studies highlighted the ability of HOSCN to perturb the electron transport chain of mitochondria and redistribute these organelles within the cell. Taken together, these data provide new insight into the pathways by which HOSCN can induce cytotoxicity and cellular damage, which may have relevance for the development of inflammatory disease, and therapeutic strategies to reduce HOCl-induced damage by supplementation with SCN-.


Asunto(s)
Peroxidasa , Tiocianatos , Línea Celular , Ácido Hipocloroso/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Oxidantes/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Tiocianatos/metabolismo
5.
Free Radic Biol Med ; 94: 88-98, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26898502

RESUMEN

Myeloperoxidase (MPO) released at sites of inflammation catalyzes the formation of the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from H2O2 and halide and pseudo-halide ions. HOCl, a major oxidant produced under physiological conditions reacts rapidly with many biological molecules, and is strongly linked with tissue damage during inflammatory disease. The role of HOSCN in disease is less clear, though it can initiate cellular damage by pathways involving the selective oxidation of thiol-containing proteins. Utilizing a thiol-specific proteomic approach, we explored the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (≤25µM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation after the initial treatment period, which may be relevant for the propagation of inflammatory disease in smokers, who have elevated plasma levels of the HOSCN precursor, thiocyanate.


Asunto(s)
Aterosclerosis/metabolismo , Inflamación/metabolismo , Peroxidasa/metabolismo , Tiocianatos/metabolismo , Aterosclerosis/patología , Muerte Celular/efectos de los fármacos , Línea Celular , Glutatión/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Oxidantes , Procesamiento Proteico-Postraduccional/genética , Proteómica , Compuestos de Sulfhidrilo/metabolismo , Tiocianatos/administración & dosificación
6.
Free Radic Biol Med ; 71: 240-255, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24632382

RESUMEN

Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.


Asunto(s)
Bromatos/metabolismo , Ácido Hipocloroso/metabolismo , Inflamación/metabolismo , Oxidantes/metabolismo , Peroxidasa/metabolismo , Tiocianatos/metabolismo , Animales , Bromatos/farmacología , Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ácido Hipocloroso/farmacología , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Estrés Oxidativo , Transducción de Señal , Tiocianatos/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda