Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 54(24): 15925-15934, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33225693

RESUMEN

Monoethylhexyl phthalate (MEHP) is one of the main active metabolites of the plasticizer di(2-ethylhexyl) phthalate. It has been known that MEHP has an impact on lipolysis; however, its mechanism on the cellular lipid metabolism remains largely unclear. Here, we first utilized global lipid profiling to fully characterize the lipid synthesis and degradation pathways upon MEHP treatment on hepatic cells. Meanwhile, we further identified the possible MEHP-targeted proteins in living cells using the cellular thermal shift assay (CETSA) method. The lipidomics results showed that there was a significant accumulation of fatty acids and other lipids in the cell. The CETSA identified 18 proteins and fatty acid ß-oxidation inhibition pathways that were significantly perturbed. MEHP's binding with selected proteins HADH and HSD17B10 was further evaluated using molecule docking, and results showed that MEHP has higher affinities as compared to endogenous substrates, which was further experimentally confirmed in the surface plasma resonance interaction assay. In summary, we found a novel mechanism for MEHP-induced lipid accumulation, which was probably due to its inhibitive effects on the enzymes in fatty acid ß-oxidation. This mechanism substantiates the public concerns on the high exposure level to plasticizers and their possible role as an obesogen.


Asunto(s)
Dietilhexil Ftalato , Ácidos Grasos , Hepatocitos , Lipólisis , Ácidos Ftálicos
2.
J Immunol ; 197(1): 108-18, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27206767

RESUMEN

In this study, we report that the integrin LFA-1 cross-linking with its ligand ICAM-1 in human PBMCs or CD4(+) T cells promotes Th1 polarization by upregulating IFN-γ secretion and T-bet expression. LFA-1 stimulation in PBMCs, CD4(+) T cells, or the T cell line HuT78 activates the Notch pathway by nuclear translocation of cleaved Notch1 intracellular domain (NICD) and upregulation of target molecules Hey1 and Hes1. Blocking LFA-1 by a neutralizing Ab or specific inhibition of Notch1 by a γ-secretase inhibitor substantially inhibits LFA-1/ICAM-1-mediated activation of Notch signaling. We further demonstrate that the Notch pathway activation is dependent on LFA-1/ICAM-1-induced inactivation of glycogen synthase kinase 3ß (GSK3ß), which is mediated via Akt and ERK. Furthermore, in silico analysis in combination with coimmunoprecipitation assays show an interaction between NICD and GSK3ß. Thus, there exists a molecular cross-talk between LFA-1 and Notch1 through the Akt/ERK-GSK3ß signaling axis that ultimately enhances T cell differentiation toward Th1. Although clinical use of LFA-1 antagonists is limited by toxicity related to immunosuppression, these findings support the concept that Notch inhibitors could be attractive for prevention or treatment of Th1-related immunologic disorders and have implications at the level of local inflammatory responses.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Células TH1/inmunología , Inmunidad Adaptativa , Anticuerpos Bloqueadores/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Línea Celular , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Terapia Molecular Dirigida , Unión Proteica , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
3.
Environ Pollut ; 360: 124645, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095001

RESUMEN

Microplastics (MPs) have emerged as a pervasive environmental pollutant of global concern. Their detection within the human placenta and fetal organs has prompted apprehension regarding the potential hazards of MPs during early organogenesis. The kidney, a vital multifunctional organ, is susceptible to damage from MPs in adulthood. However, the precise adverse effects of MP exposure on human nephrogenesis remain ambiguous due to the absence of a suitable model. Here, we explore the potential impact of MPs on early kidney development utilizing human kidney organoids in vitro. Human kidney organoids were subjected to polystyrene-MPs (PS-MPs, 1 µm) during the nephron progenitor cell (NPC) stage, a critical phase in early kidney development and patterning. We delineate the effects of PS-MPs on various stages of nephrogenesis, including NPC, renal vesicle, and comma-shaped body, through sequential examination of kidney organoids. PS-MPs were observed to adhere to the surface of cells during the NPC stage and accumulate within glomerulus-like structures within kidney organoids. Moreover, both short- and long-term exposure to PS-MPs resulted in diminished organoid size and aberrant nephron structure. PS-MP exposure heightened reactive oxygen species (ROS) production, leading to NPC apoptosis during early kidney development. Increased apoptosis, diminished cell viability, and NPC reduction likely contribute to the observed organoid size reduction under PS-MP treatment. Transcriptomic analysis at both NPC and endpoint stages revealed downregulation of Notch signaling, resulting in compromised proximal and distal tubular structures, thereby disrupting normal nephron patterning following PS-MP exposure. Our findings highlight the significant disruptive impact of PS-MPs on human kidney development, offering new insights into the mechanisms underlying PS-MP-induced nephron toxicity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Riñón , Microplásticos , Organoides , Humanos , Organoides/efectos de los fármacos , Riñón/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Microplásticos/toxicidad , Organogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Nefronas/efectos de los fármacos , Contaminantes Ambientales/toxicidad
4.
Cell Stem Cell ; 31(1): 52-70.e8, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181751

RESUMEN

Human pluripotent stem cell-derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single-cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA-approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.


Asunto(s)
Cilios , Enfermedades Renales Poliquísticas , Humanos , Riñón , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Autofagia , Organoides
6.
Cell Stem Cell ; 25(3): 373-387.e9, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31303547

RESUMEN

Human pluripotent stem cell-derived kidney organoids recapitulate developmental processes and tissue architecture, but intrinsic limitations, such as lack of vasculature and functionality, have greatly hampered their application. Here we establish a versatile protocol for generating vascularized three-dimensional (3D) kidney organoids. We employ dynamic modulation of WNT signaling to control the relative proportion of proximal versus distal nephron segments, producing a correlative level of vascular endothelial growth factor A (VEGFA) to define a resident vascular network. Single-cell RNA sequencing identifies a subset of nephron progenitor cells as a potential source of renal vasculature. These kidney organoids undergo further structural and functional maturation upon implantation. Using this kidney organoid platform, we establish an in vitro model of autosomal recessive polycystic kidney disease (ARPKD), the cystic phenotype of which can be effectively prevented by gene correction or drug treatment. Our studies provide new avenues for studying human kidney development, modeling disease pathogenesis, and performing patient-specific drug validation.


Asunto(s)
Riñón/citología , Organoides/citología , Células Madre Pluripotentes/citología , Riñón Poliquístico Autosómico Recesivo/patología , Diferenciación Celular , Células Cultivadas , Descubrimiento de Drogas , Terapia Genética , Humanos , Riñón/irrigación sanguínea , Neovascularización Fisiológica , Técnicas de Cultivo de Órganos , Organogénesis , Organoides/irrigación sanguínea , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/terapia , Medicina de Precisión , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
7.
Sci Rep ; 6: 37721, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27883055

RESUMEN

Post-transcriptional gene silencing holds great promise in discovery research for addressing intricate biological questions and as therapeutics. While various gene silencing approaches, such as siRNA and CRISPR-Cas9 techniques, are available, these cannot be effectively applied to "hard-to-transfect" primary T-lymphocytes. The locked nucleic acid-conjugated chimeric antisense oligonucleotide, called "GapmeR", is an emerging new class of gene silencing molecule. Here, we show that GapmeR internalizes into human primary T-cells through macropinocytosis. Internalized GapmeR molecules can associate with SNX5-positive macropinosomes in T-cells, as detected by super-resolution microscopy. Utilizing the intrinsic self-internalizing capability of GapmeR, we demonstrate significant and specific depletion (>70%) of the expression of 5 different endogenous proteins with varying molecular weights (18 kDa Stathmin, 80 kDa PKCε, 180 kDa CD11a, 220 kDa Talin1 and 450 kDa CG-NAP/AKAP450) in human primary and cultured T-cells. Further functional analysis confirms CG-NAP and Stathmin as regulators of T-cell motility. Thus, in addition to screening, identifying or verifying critical roles of various proteins in T-cell functioning, this study provides novel opportunities to silence individual or multiple genes in a subset of purified human primary T-cells that would be exploited as future therapeutics.


Asunto(s)
Transporte Biológico/fisiología , Silenciador del Gen/fisiología , Oligonucleótidos Antisentido/genética , Oligonucleótidos/genética , Pinocitosis/fisiología , Linfocitos T/fisiología , Transporte Biológico/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Humanos , Pinocitosis/genética , Nexinas de Clasificación/genética , Estatmina/genética , Transfección/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda