Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982460

RESUMEN

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Precursores del ARN , Empalme del ARN , Inmunidad de la Planta/genética , Arabidopsis/genética , Arabidopsis/inmunología , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Empalmosomas/metabolismo , Empalmosomas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología
2.
J Exp Bot ; 74(3): 976-990, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36346205

RESUMEN

Plants have evolved a two-layer immune system comprising pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) that is activated in response to pathogen invasion. Microbial patterns and pathogen effectors can be recognized by surface-localized pattern-recognition receptors (PRRs) and intracellularly localized nucleotide-binding leucine-rich repeat receptors (NLRs) to trigger PTI and ETI responses, respectively. At present, the metabolites activated by PTI and ETI and their roles and signalling pathways in plant immunity are not well understood. In this study, metabolomic analysis showed that ETI and PTI induced various flavonoids and amino acids and their derivatives in plants. Interestingly, both glutathione and neodiosmin content were specifically up-regulated by ETI and PTI, respectively, which significantly enhanced plant immunity. Further studies showed that glutathione and neodiosmin failed to induce a plant immune response in which PRRs/co-receptors were mutated. In addition, glutathione-reduced mutant gsh1 analysis showed that GSH1 is also required for PTI and ETI. Finally, we propose a model in which glutathione and neodiosmin are considered signature metabolites induced in the process of ETI and PTI activation in plants and further continuous enhancement of plant immunity in which PRRs/co-receptors are needed. This model is beneficial for an in-depth understanding of the closed-loop mode of the positive feedback regulation of PTI and ETI signals at the metabolic level.


Asunto(s)
Inmunidad de la Planta , Plantas , Retroalimentación , Plantas/metabolismo , Transducción de Señal , Receptores de Reconocimiento de Patrones/metabolismo , Enfermedades de las Plantas
3.
J Cell Physiol ; 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183375

RESUMEN

Some microbial volatile organic compounds (mVOCs) can act as antagonistic weapons against plant pathogens, but little information is available on the contribution of individual mVOC to biocontrol and how they interact with plant pathogens. In this study, the Bacillus subtilis strain N-18 isolated from the rhizosphere of healthy plants grown in areas where Fusarium crown and root rot (FCRR) of tomato occurs could reduce the 30% of the incidence of FCRR. Moreover, the volatile organic compounds (VOCs) produced by N-18 had inhibitory effects on Fusarium oxysporum f. sp. radicis-lycopersici (FORL). The identification of VOCs of N-18 was analyzed by the solid-phase microextraction coupled to gas chromatography-mass spectrometry. Meanwhile, we conducted sensitivity tests with these potential active ingredients and found that the volatile substances acetoin and 2-heptanol can reduce the 41.33% and 35% of the incidence of FCRR in tomato plants. In addition, the potential target protein of acetoin, found in the cheminformatics and bioinformatics database, was F. oxysporum of hypothetical protein AU210_012600 (FUSOX). Molecular docking results further predicted that acetoin interacts with FUSOX protein. These results reveal the VOCs of N-18 and their active ingredients in response to FORL and provide a basis for further research on regulating and controlling FCRR.

4.
J Nanobiotechnology ; 20(1): 197, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459250

RESUMEN

BACKGROUND: By 2050, the world population will increase to 10 billion which urged global demand for food production to double. Plant disease and land drought will make the situation more dire, and safer and environment-friendly materials are thus considered as a new countermeasure. The rice blast fungus, Magnaporthe oryzae, causes one of the most destructive diseases of cultivated rice worldwide that seriously threatens rice production. Unfortunately, traditional breeding nor chemical approaches along control it well. Nowadays, nanotechnology stands as a new weapon against these mounting challenges and silica nanoparticles (SiO2 NPs) have been considered as potential new safer agrochemicals recently but the systematically studies remain limited, especially in rice. RESULTS: Salicylic acid (SA) is a key plant hormone essential for establishing plant resistance to several pathogens and its further affected a special form of induced resistance, the systemic acquired resistance (SAR), which considered as an important aspect of plant innate immunity from the locally induced disease resistance to the whole plant. Here we showed that SiO2 NPs could stimulate plant immunity to protect rice against M. oryzae through foliar treatment that significantly decreased disease severity by nearly 70% within an appropriate concentration range. Excessive concentration of foliar treatment led to disordered intake and abnormal SA responsive genes expressions which weaken the plant resistance and even aggravated the disease. Importantly, this SA-dependent fungal resistance could achieve better results with root treatment through a SAR manner with no phytotoxicity since the orderly and moderate absorption. What's more, root treatment with SiO2 NPs could also promote root development which was better to deal with drought. CONCLUSIONS: Taken together, our findings not only revealed SiO2 NPs as a potential effective and safe strategy to protect rice against biotic and abiotic stresses, but also identify root treatment for the appropriate application method since it seems not causing negative effects and even have promotion on root development.


Asunto(s)
Magnaporthe , Nanopartículas , Oryza , Ascomicetos , Regulación de la Expresión Génica de las Plantas , Magnaporthe/metabolismo , Oryza/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Dióxido de Silicio/farmacología , Estrés Fisiológico
5.
Plant Cell Environ ; 44(1): 88-101, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32677712

RESUMEN

Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.


Asunto(s)
Semillas/metabolismo , Cloruro de Sodio/metabolismo , Zea mays/genética , Ácido Abscísico/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteoma , Estrés Salino , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
6.
J Sep Sci ; 43(12): 2311-2320, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32176835

RESUMEN

In a recent study, anthocyanins, which have a strong free radical-scavenging activity, were examined for their potential to effectively prevent cancer. However, clinical trials are limited by the purity of the anthocyanin. Multiple methods are used to extract and purify anthocyanins. Based on previous work on Solanum nigrum, which is a widely distributed plant, in this study, DM130 macroporous resin, Sephadex LH20, and a C18 column were used to separate cis-trans anthocyanin isomers. These anthocyanins constitute the majority of total S. nigrum anthocyanins. The results showed that this "DM130-LH20-C18 system" can be used to obtain a cinnamic acid-derived cis-trans anthocyanin, petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside, with a purity of 98.5%, for effective quantitation. In order to determine the antioxidant ability of the petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside cis-trans isomers, three ordinary methods were adopted. The maximum antioxidant ability of the cis-trans anthocyanin was dozens of times higher than that of vitamin C.


Asunto(s)
Antocianinas/análisis , Antioxidantes/análisis , Ésteres/análisis , Glucósidos/análisis , Extractos Vegetales/análisis , Solanum nigrum/química , Antocianinas/farmacología , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Ésteres/farmacología , Frutas/química , Glucósidos/farmacología , Extractos Vegetales/farmacología , Ácidos Sulfónicos/antagonistas & inhibidores
7.
New Phytol ; 223(1): 277-292, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30790290

RESUMEN

In mammalians and yeast, the splicing factor U2AF65/Mud2p functions in precursor messenger RNA (pre-mRNA) processing. Arabidopsis AtU2AF65b encodes a putative U2AF65 but its specific functions in plants are unknown. This paper examines the function of AtU2AF65b as a negative regulator of flowering time in Arabidopsis. We investigated the expression and function of AtU2AF65b in abscisic acid (ABA)-regulated flowering as well as the transcript abundance and pre-mRNA splicing of flowering-related genes in the knock-out mutants of AtU2AF65b. The atu2af65b mutants show early-flowering phenotype under both long-day and short-day conditions. The transcript accumulation of the flowering repressor gene FLOWERING LOCUS C (FLC) is reduced in the shoot apex of atu2af65b, due to both increased intron retention and reduced transcription activation. Reduced transcription of FLC results, at least partially, from the abnormal splicing and reduced transcript abundance of ABSCISIC ACID-INSENSITIVE 5 (ABI5), which encodes an activator of FLC in ABA-regulated flowering signaling. Additionally, the expression of AtU2AF65b is promoted by ABA. Transition to flowering and splicing of FLC and ABI5 in the atu2af65b mutants are compromised during ABA-induced flowering. ABA-responsive AtU2AF65b functions in the pre-mRNA splicing of FLC and ABI5 in shoot apex, whereby AtU2AF65b is involved in ABA-mediated flowering transition in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Empalme del ARN/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Proteínas de Dominio MADS/metabolismo , Mutación/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Plantones/metabolismo , Factor de Empalme U2AF/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética
9.
J Agric Food Chem ; 72(10): 5107-5121, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38428019

RESUMEN

Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.


Asunto(s)
Inoculantes Agrícolas , Plaguicidas , Agricultura , Productos Agrícolas , Producción de Cultivos
10.
Mol Plant Pathol ; 25(1): e13409, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069667

RESUMEN

Auxin plays a pivotal role in the co-evolution of plants and microorganisms. Xanthomonas oryzae pv. oryzicola (Xoc) stands as a significant factor that affects rice yield and quality. However, the current understanding of Xoc's capability for indole 3-acetic acid (IAA) synthesis and its mechanistic implications remains elusive. In this study, we performed a comprehensive genomic analysis of Xoc strain RS105, leading to the identification of two nitrilase enzyme family (NIT) genes, designated as AKO15524.1 and AKO15829.1, subsequently named NIT24 and NIT29, respectively. Our investigation unveiled that the deletion of NIT24 and NIT29 resulted in a notable reduction in IAA synthesis capacity within RS105, thereby impacting extracellular polysaccharide production. This deficiency was partially ameliorated through exogenous IAA supplementation. The study further substantiated that NIT24 and NIT29 have nitrilase activity and the ability to catalyse IAA production in vitro. The lesion length and bacterial population statistics experiments confirmed that NIT24 and NIT29 positively regulated the pathogenicity of RS105, suggesting that NIT24 and NIT29 may regulate Xoc invasion by affecting IAA synthesis. Furthermore, our analysis corroborated mutant strains, RS105_ΔNIT24 and RS105_ΔNIT29, which elicited the outbreak of reactive oxygen species, the deposition of callose and the upregulation of defence-related gene expression in rice. IAA exerted a significant dampening effect on the immune responses incited by these mutant strains in rice. In addition, the absence of NIT24 and NIT29 affected the growth-promoting effect of Xoc on rice. This implies that Xoc may promote rice growth by secreting IAA, thus providing a more suitable microenvironment for its own colonization. In summary, our study provides compelling evidence for the existence of a nitrilase-dependent IAA biosynthesis pathway in Xoc. IAA synthesis-related genes promote Xoc colonization by inhibiting rice immune defence response and affecting rice growth by increasing IAA content in Xoc.


Asunto(s)
Oryza , Xanthomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oryza/microbiología , Virulencia , Suplementos Dietéticos , Enfermedades de las Plantas/microbiología
11.
Plant Commun ; 5(6): 100859, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38444161

RESUMEN

Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a continuous threat to rice cultivation, leading to substantial yield losses with socioeconomic implications. Iron ions are essential mineral nutrients for plant growth, but little information is available on how they influence mechanisms of rice immunity against Xoc. Here, we investigated the role of the myeloblastosis-related (MYB) transcriptional repressor OsMYBxoc1 in modulation of rice resistance through control of iron ion transport. Overexpression of OsMYBxoc1 significantly increased rice resistance, whereas OsMYBxoc1 RNA-interference lines and knockout mutants showed the opposite result. Suppression of OsMYBxoc1 expression dampened the immune response induced by pathogen-associated molecular patterns. We demonstrated that OsMYBxoc1 binds specifically to the OsNRAMP5 promoter and represses transcription of OsNRAMP5. OsNRAMP5, a negative regulator of rice resistance to bacterial leaf streak, possesses metal ion transport activity, and inhibition of OsMYBxoc1 expression increased the iron ion content in rice. Activity of the ion-dependent H2O2 scavenging enzyme catalase was increased in plants with suppressed expression of OsMYBxoc1 or overexpression of OsNRAMP5. We found that iron ions promoted Xoc infection and interfered with the production of reactive oxygen species induced by Xoc. The type III effector XopAK directly inhibited OsMYBxoc1 transcription, indicating that the pathogen may promote its own proliferation by relieving restriction of iron ion transport in plants. In addition, iron complemented the pathogenicity defects of the RS105_ΔXopAK mutant strain, further confirming that iron utilization by Xoc may be dependent upon XopAK. In conclusion, our study reveals a novel mechanism by which OsMYBxoc1 modulates rice resistance by regulating iron accumulation and demonstrates that Xoc can accumulate iron ions by secreting the effector XopAK to promote its own infection.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Hierro , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/metabolismo , Xanthomonas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hierro/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Mol Plant ; 17(5): 807-823, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38664971

RESUMEN

The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/genética , Oryza/metabolismo , Oryza/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Magnaporthe/fisiología , Ascomicetos/fisiología
13.
Plant Methods ; 20(1): 70, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755668

RESUMEN

BACKGROUND: Phytophthora sojae, a soil-borne oomycete pathogen, has been a yield limiting factor for more than 60 years on soybean. The resurgence of P. sojae (Phytophthora sojae) is primarily ascribed to the durable oospores found in soil and remnants of the disease. P. sojae is capable of infesting at any growth periods of the soybean, and the succeed infestation of P. sojae is predominantly attributed to long-lived oospores present in soil. Comprehending the molecular mechanisms that drive oospores formation and their significance in infestation is the key for effective management of the disease. However, the existing challenges in isolating and extracting significant quantities of oospores pose limitations in investigating the sexual reproductive stages of P. sojae. RESULTS: The study focused on optimizing and refining the culture conditions and extraction process of P. sojae, resulting in establishment of an efficient and the dependable method for extraction. Novel optimized approach was yielded greater quantities of high-purity P. sojae oospores than traditional methods. The novel approach exceeds the traditional approaches with respect to viability, survival ability, germination rates of new oospores and the pathogenicity of oospores in potting experiments. CONCLUSION: The proposed method for extracting P. sojae oospores efficiently yielded a substantial quantity of highly pure, viable, and pathogenic oospores. The enhancements in oospores extraction techniques will promote the research on the sexual reproductive mechanisms of P. sojae and lead to the creation of innovative and effective approaches for managing oomycete diseases.

14.
Hortic Res ; 10(2): uhac282, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36818368

RESUMEN

Fruit lycopene, shape, and resistance are essential traits in vegetables whose final product is fruit, and they are also closely related to and strictly regulated by multiple transcription factors. Lycopene, which cannot be synthesized by the human body and can only be ingested from the outside, was important in maintaining human health. During fruit ripening and post-harvest, tomato plants face a variety of biotic or abiotic stresses, which might inflict great damage to fruit quality due to its flat shape and pointed tip during storage and transportation. Therefore, there is an urgent need for key molecular switches to simultaneously improve fruit lycopene and resistance to biotic stress during ripening. Here, we identified the MYB transcription factor SlMYB1 in tomato plants which could bind to the promoters of lycopene synthesis-related genes, SlLCY1, SlPSY2, and the pathogen-related gene SlPR5 directly, to regulate the fruit lycopene and resistance to Botrytis cinerea in tomato. In addition to regulating lycopene synthesis, SlMYB1 also regulates the content of soluble sugar, soluble protein and flavonoid in tomato. What's more, SlMYB1 could regulate the tomato fruit shape, making it smoother or flatter to prevent skin damage caused by vibration on fruits. RNA sequencing (RNA-seq) further showed that SlMYB1 fruit-specific expression lines had multiple differentially expressed genes compared with those from wild-type plants, suggesting that SlMYB1 might have multiple roles in fruit nutritional quality control and resistance to stresses, which is a rare occurrence in previous studies. In summary, our results revealed that SlMYB1 was an essential multi-functional transcription factor that could regulate the lycopene and resistance to Botrytis cinerea, and change the shape of fruit in tomato plants.

15.
J Adv Res ; 46: 1-15, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35811061

RESUMEN

INTRODUCTION: Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES: This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS: The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS: This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION: In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.


Asunto(s)
Arabidopsis , Nucleósidos , Plantas , Arabidopsis/genética , Transducción de Señal , Desoxiguanosina
16.
Methods Mol Biol ; 2462: 155-162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152387

RESUMEN

Immunofluorescent approach uses fluorophore-conjugated antibodies to target molecules of interest for the observation of their distribution and microenvironment at cellular or tissue level. In connection with modern fluorescence microscopy, immunofluorescence has high sensitivity and specificity, resulting in a wide range of applications in animal studies. However, the protocols of immunofluorescence are seldom reported. To this end, we describe an optimized protocol for the detection of plant hormone abscisic acid (ABA) in monocot crop species, including maize and rice. By using immunofluorescence technique provided from this protocol, investigation of ABA distribution will continue to deeper our insights in crop developments and stress responses.


Asunto(s)
Ácido Abscísico , Oryza , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
17.
Front Plant Sci ; 13: 841228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251109

RESUMEN

Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.

18.
Plant Commun ; 3(3): 100324, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35576156

RESUMEN

Xanthomonas oryzae pv. oryzicola (Xoc), which causes rice bacterial leaf streak, invades leaves mainly through stomata, which are often closed as a plant immune response against pathogen invasion. How Xoc overcomes stomatal immunity is unclear. Here, we show that the effector protein AvrRxo1, an ATP-dependent protease, enhances Xoc virulence and inhibits stomatal immunity by targeting and degrading rice OsPDX1 (pyridoxal phosphate synthase), thereby reducing vitamin B6 (VB6) levels in rice. VB6 is required for the activity of aldehyde oxidase, which catalyzes the last step of abscisic acid (ABA) biosynthesis, and ABA positively regulates rice stomatal immunity against Xoc. Thus, we provide evidence supporting a model in which a major bacterial pathogen inhibits plant stomatal immunity by directly targeting VB6 biosynthesis and consequently inhibiting the biosynthesis of ABA in guard cells to open stomata. Moreover, AvrRxo1-mediated VB6 targeting also explains the poor nutritional quality, including low VB6 levels, of Xoc-infected rice grains.


Asunto(s)
Oryza , Proteínas Bacterianas , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Vitamina B 6 , Xanthomonas
19.
Stress Biol ; 2(1): 39, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37676445

RESUMEN

Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.

20.
Mol Plant Pathol ; 21(5): 636-651, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32077242

RESUMEN

Copper-based antimicrobial compounds are widely and historically used to control plant diseases, such as late blight caused by Phytophthora infestans, which seriously affects the yield and quality of potato. We previously identified that copper ion (Cu2+ ) acts as an extremely sensitive elicitor to induce ethylene (ET)-dependent immunity in Arabidopsis. Here, we found that Cu2+ induces the defence response to P. infestans in potato. Cu2+ suppresses the transcription of the abscisic acid (ABA) biosynthetic genes StABA1 and StNCED1, resulting in decreased ABA content. Treatment with ABA or inhibitor fluridone made potato more susceptible or resistance to late blight, respectively. In addition, potato with knockdown of StABA1 or StNCED1 showed greater resistance to late blight, suggesting that ABA negatively regulates potato resistance to P. infestans. Cu2+ also promotes the rapid biosynthesis of ET. Potato plants treated with 1-aminocyclopropane-1-carboxylate showed enhanced resistance to late blight. Repressed expression of StEIN2 or StEIN3 resulted in enhanced transcription of StABA1 and StNCED1, accumulation of ABA and susceptibility to P. infestans. Consistently, StEIN3 directly binds to the promoter regions of StABA1 and StNCED1. Overall, we concluded that Cu2+ triggers the defence response to potato late blight by activating ET biosynthesis to inhibit the biosynthesis of ABA.


Asunto(s)
Cobre/farmacología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Fungicidas Industriales/farmacología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Phytophthora infestans/patogenicidad , Proteínas de Plantas/genética , Piridonas/farmacología , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda