Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Plant Biol ; 19(1): 19, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634907

RESUMEN

BACKGROUND: Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS: In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS: This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.


Asunto(s)
Cromosomas de las Plantas/genética , Gossypium/genética , Gossypium/microbiología , Transcriptoma/genética , Verticillium/patogenicidad , Regulación de la Expresión Génica de las Plantas/genética
2.
Mol Genet Genomics ; 294(5): 1123-1136, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31030276

RESUMEN

Chromosome segment substitution lines (CSSLs) are ideal materials for identifying genetic effects. In this study, CSSL MBI7561 with excellent fiber quality that was selected from BC4F3:5 of CCRI45 (Gossypium hirsutum) × Hai1 (Gossypium barbadense) was used to construct 3 secondary segregating populations with 2 generations (BC5F2 and BC5F2:3). Eighty-one polymorphic markers related to 33 chromosome introgressive segments on 18 chromosomes were finally screened using 2292 SSR markers which covered the whole tetraploid cotton genome. A total of 129 quantitative trait loci (QTL) associated with fiber quality (103) and yield-related traits (26) were detected on 17 chromosomes, explaining 0.85-30.35% of the phenotypic variation; 39 were stable (30.2%), 53 were common (41.1%), 76 were new (58.9%), and 86 had favorable effects on the related traits. More QTL were distributed in the Dt subgenome than in the At subgenome. Twenty-five stable QTL clusters (with stable or common QTL) were detected on 22 chromosome introgressed segments. Finally, the 6 important chromosome introgressed segments (Seg-A02-1, Seg-A06-1, Seg-A07-2, Seg-A07-3, Seg-D07-3, and Seg-D06-2) were identified as candidate chromosome regions for fiber quality, which should be given more attention in future QTL fine mapping, gene cloning, and marker-assisted selection (MAS) breeding.


Asunto(s)
Cromosomas de las Plantas/genética , Gossypium/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico/métodos , Fibra de Algodón , Cruzamientos Genéticos , Genoma de Planta/genética , Fenotipo
3.
BMC Genomics ; 18(1): 705, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886694

RESUMEN

BACKGROUND: How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. RESULTS: In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. CONCLUSIONS: The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs.


Asunto(s)
Cromosomas de las Plantas/genética , Fibra de Algodón , Perfilación de la Expresión Génica , Gossypium/crecimiento & desarrollo , Gossypium/genética , Hibridación Genética , Pared Celular/metabolismo , Gossypium/citología , Fenotipo , Reproducibilidad de los Resultados
4.
Virus Genes ; 46(3): 479-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23468229

RESUMEN

In the present study, Torque teno sus viruses (TTSuVs) were detected in tissue and blood samples obtained from domestic pigs in central China, and complete genomes of TTSuVs were characterized. A total of three tissue samples (3/20, 15 %) from post-weaning multisystemic wasting syndrome-affected pigs and 30 blood samples (30/40, 75 %) from healthy pigs were positive for Torque teno sus virus 1 (TTSuV1) and/or 2 (TTSuV2). Two TTSuV strains (TTV1Hn54 and TTV2Hn93) comprising 2,794 and 2,875 nucleotides, respectively, each had four open reading frames (ORFs) and the untranslated region with TATA box and GC-rich region. Genomic sequence of TTV2Hn93 strain was unique in length compared with other TTSuV2 genomic sequences. Interestingly, three rolling-circle replication (RCR) motif-IIIs (YXXK) which were located at amino acid (aa) position 166-169, 328-331, and 379-382, respectively, were found in the ORF1 of TTV1Hn54. Two RCR motif-IIIs (YXXK) at the aa position 105-108 and 480-483 respectively, were also identified in the ORF1 of TTV2Hn93. Phylogenetic tree based on complete genomes showed that TTV1Hn54 strain was designated into type TTSuV1b and had a slight high sequence identity of 91 % with the Canada strain (JQ120664). TTV2Hn93 strain was classified into subtype TTSuV2d and shared the highest identity (97 %) with the Spain strain (GU570207).


Asunto(s)
Circovirus/genética , ADN Viral/química , ADN Viral/genética , Genoma Viral , Síndrome Multisistémico de Emaciación Posdestete Porcino/virología , Regiones no Traducidas 5' , Secuencias de Aminoácidos , Estructuras Animales/virología , Animales , Sangre/virología , China , Circovirus/aislamiento & purificación , Análisis por Conglomerados , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Sus scrofa , Porcinos , TATA Box
5.
G3 (Bethesda) ; 11(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846710

RESUMEN

Cotton Verticillium wilt (VW) is a devastating disease seriously affecting fiber yield and quality, and the most effective and economical prevention measure at present is selection and extension of Gossypium varieties harboring high resistance to VW. However, multiple attempts to improve the VW resistance of the most widely cultivated upland cottons have made little significant progress. The introduction of chromosome segment substitution lines (CSSLs) provide the practical solutions for merging the superior genes related with high yield and wide adaptation from Gossypium hirsutum and VW resistance and the excellent fiber quality from Gossypium barbadense. In this study, 300 CSSLs were chosen from the developed BC5F3:5 CSSLs constructed from CCRI36 (G. hirsutum) and Hai1 (G. barbadense) to conduct quantitative trait locus (QTL) mapping of VW resistance, and a total of 40 QTL relevant to VW disease index (DI) were identified. Phenotypic data were obtained from a 2-year investigation in two fields with two replications per year. All the QTL were distributed on 21 chromosomes, with phenotypic variation of 1.05%-10.52%, and 21 stable QTL were consistent in at least two environments. Based on a meta-analysis, 34 novel QTL were identified, while 6 loci were consistent with previously identified QTL. Meanwhile, 70 QTL hotspot regions were detected, including 44 novel regions. This study concentrates on QTL identification and screening for hotspot regions related with VW in the 300 CSSLs, and the results lay a solid foundation not only for revealing the genetic and molecular mechanisms of VW resistance but also for further fine mapping, gene cloning and molecular designing in breeding programs for resistant cotton varieties.


Asunto(s)
Verticillium , Cromosomas de las Plantas/genética , Gossypium/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda