RESUMEN
Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.
Asunto(s)
Enfermedades del Sistema Digestivo , Enfermedad de Parkinson , Humanos , Dopamina/metabolismo , Receptores Dopaminérgicos , Enfermedad de Parkinson/metabolismo , NeurotransmisoresRESUMEN
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.
Asunto(s)
Canales Iónicos , Fenómenos Fisiológicos , Transporte Biológico , Homeostasis , NutrientesRESUMEN
Myopia is a refractive error of the eye that is prevalent worldwide. The most extreme form, high myopia, is usually associated with other ocular disorders such as retinal detachment, macular degeneration, cataract, and glaucoma, and is one of leading causes of blindness. The etiology is complex and has not been fully elucidated. In this study, we identified a novel missense variant of the CCDC111 gene (NM_152683.2: c.265T > G; p.Y89D) in a high myopia family by exome sequencing. The variant was identified in 4 patients from an additional 270 sporadic high myopia patients, but not found in 270 controls. The amino acid is highly conserved across species, and variants giving rise to amino acid substitutions are predicted to be functionally damaging. The CCDC111 gene was ubiquitously expressed in primary cell cultures from human eye tissue, including corneal epithelial cells, choroidal melanoma cells, scleral fibroblasts, retinal epithelial cells, retinal Müller cells, and lens capsule epithelial cells. In summary, our results suggested that the CCDC111 may be a susceptibility gene for high myopia.
Asunto(s)
Exoma/genética , Mutación Missense/genética , Miopía/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , ADN Primasa , ADN Polimerasa Dirigida por ADN , Femenino , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Enzimas Multifuncionales , Linaje , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Adulto JovenRESUMEN
Referring to Walsh's theoretical framework of family resilience while taking into account China's own cultural and institutional context, this study discussed the process of resilience generation in Chinese families of children with ASD. A qualitative approach was taken, using narrative research on 10 Chinese families of children with ASD. Category-content analysis of the data suggests that the generation of resilience in Chinese families of children with ASD is influenced by four factors: (A) cultivating positive family beliefs; (B) adjustment of the family's organizational pattern; (C) extending external resources positively; and (D) optimizing family communication. Unlike family resilience generation mechanisms in Western countries that emphasize religious beliefs, intrinsic traits, and resources, the resilience of Chinese families of children with ASD is based on a family value system based on a sense of responsibility and the application of internal and external family resources, which is undoubtedly related to China's long-standing emphasis on collectivist culture. This study has theoretical reference value for the implementation of related social work services.
RESUMEN
The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease.
Asunto(s)
Monocitos , Canales de Potencial de Receptor Transitorio , Animales , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo , Macrófagos , Mamíferos/metabolismoRESUMEN
RATIONALE: Converging evidence suggests that neuroimmunity plays an important role in the pathophysiology of anxiety. Interleukin (IL)-4 is a key cytokine regulating neuroimmune functions in the central nervous system. More efficient anxiolytics with neuro-immune mechanisms are urgently needed. OBJECTIVE: To determine whether 3'-deoxyadenosine (3'-dA) exerts an anxiolytic effect and to examine the role of IL-4 in the anxiolytic effect of 3'-dA in mice. METHODS: We investigated the effects of 3'-dA on anxiety-like behaviors using elevated plus maze (EPM) or light-dark box (LDB) tests after 45 min or 5 days of treatment. Expression of IL-4, IL-10, IL-1ß, TNF-α, and IL-6 in the prefrontal cortex (PFC) was detected by Western blot and/or double immunostaining. Intracerebroventricular injection of RIL-4Rα (an IL-4-specific inhibitor) and intraperitoneal injection of 3'-dA or imipramine were co-administered, followed by EPM test. RESULTS: 3'-dA exhibited a stronger and faster anxiolytic effect than imipramine in behavioral tests. Furthermore, 3'-dA enhanced IL-4 expression after 45 min or 5 days, TNF-α and IL-1ß expression decreased significantly after a 5-day treatment with 3'-dA, and IL-10 expression increased after a 5-day treatment with 3'-dA or imipramine in the PFC. IL-4 was expressed in neurons and in some astrocytes and microglia. IL-4 expression showed a strong positive correlation with reduced anxiety behaviors. RIL-4Rα completely blocked the anxiolytic effects induced by 3'-dA and imipramine. CONCLUSIONS: This study identifies a novel and common anxiolytic IL-4 signaling pathway and provides an innovative drug with a novel neuro-immune mechanism for treating anxiety disorder.