Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Opt ; 54(4): B140-53, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25967820

RESUMEN

During a Stratospheric Aerosol and Gas (SAGE)-III Ozone Loss and Validation Experiment (SOLVE)-II science flight on 4 February 2003, a mother-of-pearl cloud over Iceland was underflown by the NASA DC-8 and measured with the lidars onboard. In addition, color photos were taken during the approach. Aided by extensive modeling of cloud coloration, the main results of the analysis of this unique data set are: (1) the polar stratospheric cloud was mountain wave-induced and of type II; (2) the spectacular color display was caused by ice particles with sizes around 2 µm.

2.
Opt Express ; 21(15): 17625-38, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23938635

RESUMEN

A realistic nonspherical model for Emiliania huxleyi (EHUX) is built, based on electron micrographs of coccolithophore cells. The Inherent Optical Properties (IOP) of the EHUX are then calculated numerically by using the discrete dipole approximation. The coccolithophore model includes a near-spherical core with the refractive index of 1.04 + m(i)j, and a carbonate shell formed by smaller coccoliths with refractive index of 1.2 + m(i)j, where m(i) = 0 or 0.01 and j(2) = -1. The reported IOP are the Mueller scattering matrix, backscattering probability, and depolarization ratio. Our calculation shows that the Mueller matrices of coccolithophores show different angular dependence from those of coccoliths.


Asunto(s)
Haptophyta/química , Haptophyta/ultraestructura , Modelos Biológicos , Refractometría/métodos , Simulación por Computador , Luz , Dispersión de Radiación
3.
Opt Express ; 18(20): 20862-75, 2010 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-20940981

RESUMEN

The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented.


Asunto(s)
Colorimetría/métodos , Monitoreo del Ambiente/instrumentación , Óptica y Fotónica , Color , Simulación por Computador , Monitoreo del Ambiente/métodos , Procesamiento de Imagen Asistido por Computador , Luz , Microondas , Océanos y Mares , Tecnología de Sensores Remotos , Dispersión de Radiación
4.
Opt Express ; 17(4): 2057-79, 2009 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-19219111

RESUMEN

A vector radiative transfer model has been developed for coupled atmosphere and ocean systems based on the Successive Order of Scattering (SOS) Method. The emphasis of this study is to make the model easy-to-use and computationally efficient. This model provides the full Stokes vector at arbitrary locations which can be conveniently specified by users. The model is capable of tracking and labeling different sources of the photons that are measured, e.g. water leaving radiances and reflected sky lights. This model also has the capability to separate florescence from multi-scattered sunlight. The delta - fit technique has been adopted to reduce computational time associated with the strongly forward-peaked scattering phase matrices. The exponential - linear approximation has been used to reduce the number of discretized vertical layers while maintaining the accuracy. This model is developed to serve the remote sensing community in harvesting physical parameters from multi-platform, multi-sensor measurements that target different components of the atmosphere-oceanic system.


Asunto(s)
Atmósfera/análisis , Atmósfera/química , Monitoreo del Ambiente/métodos , Modelos Químicos , Nefelometría y Turbidimetría/métodos , Fotometría/métodos , Refractometría/métodos , Algoritmos , Simulación por Computador , Luz , Océanos y Mares , Dispersión de Radiación
5.
Atmos Meas Tech ; 11(3): 1459-1479, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33479568

RESUMEN

Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures - i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime - depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. As well, an enhanced strategy for filtering the radiation-induced noise from high energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved MERRA-2 model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3% lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne high spectral resolution lidar (HSRL) are reduced from 3.6% ± 2.2% in the version 3 data set to 1.6% ± 2.4 % in the version 4 release.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda