Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Langmuir ; 32(13): 3100-9, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26919199

RESUMEN

Surfactant aggregation plays an important role in a variety of chemical and biological nanoscale processes. On a larger scale, using small amounts of amphiphiles compared to large volumes of bulk-phase modifiers can improve the efficiency and reduce the environmental impact of many chemical and industrial processes. To model ternary mixtures of polar, nonpolar, and amphiphilic molecules, we develop a molecular thermodynamic theory for polydisperse water-in-oil (W/O) droplet-type microemulsions and reverse micelles based on global minimization of the Gibbs free energy of the system. The incorporation of size polydispersity into the theoretical formulation has a significant effect on the Gibbs free energy landscape and allows us to accurately predict micelle size distributions and micelle size variation with composition. Results are presented for two sample ionic surfactant/water/oil systems and compared with experimental data. By predicting the structural and compositional characteristics of w/o microemulsions, the molecular thermodynamic approach provides an important bridge between the modeling of ternary systems at the molecular and the macroscopic level.

2.
Langmuir ; 32(9): 2175-83, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26854650

RESUMEN

Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.


Asunto(s)
Calor , Micelas , Modelos Químicos , Termodinámica
3.
Langmuir ; 30(22): 6373-83, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24832546

RESUMEN

The self-assembly of amphiphilic molecules is a key process in numerous biological and chemical systems. When salts are present, the formation and properties of molecular aggregates can be altered dramatically by the specific types of ions in the electrolyte solution. We present a molecular thermodynamic model for the micellization of ionic surfactants that incorporates quantum dispersion forces to account for specific ion effects explicitly through ionic polarizabilities and sizes. We assume that counterions are distributed in the diffuse region according to a modified Poisson-Boltzmann equation and can reach all the way to the micelle surface of charge. Stern layers of steric exclusion or distances of closest approach are not imposed externally; these are accounted for through the counterion radial distribution profiles due to the incorporation of dispersion potentials, resulting in a simple and straightforward treatment. There are no adjustable or fitted parameters in the model, which allows for a priori quantitative prediction of surfactant aggregation behavior based only on the initial composition of the system and the surfactant molecular structure. The theory is validated by accurately predicting the critical micelle concentration (CMC) for the well-studied sodium dodecyl sulfate (SDS) surfactant and its alkaline-counterion derivatives in mono- and divalent salts, as well as the molecular structure parameters of SDS micelles such as aggregation numbers and micelle surface potential.


Asunto(s)
Tensoactivos/química , Micelas , Dodecil Sulfato de Sodio/química , Termodinámica
4.
Sci Rep ; 2: 390, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22550566

RESUMEN

Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature T(g). Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of T(g)(P) for LDA and HDA by performing computer simulations of two water models - one with a LLPT, and one without. In the absence of a LLPT, T(g)(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different T(g)(P) which are directly linked with the LLPT. Available experimental data for T(g)(P) are only consistent with the scenario including a LLPT.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda