Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 555(7695): 223-226, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29516995

RESUMEN

The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000 kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.

2.
Nature ; 555(7695): 227-230, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29517000

RESUMEN

Jupiter's atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant's interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter's gravity field is north-south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter's even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.

3.
Nature ; 555(7695): 220-222, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29517001

RESUMEN

The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet's equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter's gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north-south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter's dynamical atmosphere.

4.
Nature ; 555(7695): 216-219, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29516997

RESUMEN

The familiar axisymmetric zones and belts that characterize Jupiter's weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis ß-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter's low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter's equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis ß-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn's polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253608

RESUMEN

We hypothesize that trace amounts of phosphides formed in the mantle are a plausible abiotic source of the Venusian phosphine observed by Greaves et al. [Nat. Astron., https://doi.org/10.1038/s41550-020-1174-4 (2020)]. In this hypothesis, small amounts of phosphides (P3- bound in metals such as iron), sourced from a deep mantle, are brought to the surface by volcanism. They are then ejected into the atmosphere in the form of volcanic dust by explosive volcanic eruptions, which were invoked by others to explain the episodic changes of sulfur dioxide seen in the atmosphere [Esposito, Science 223, 1072-1074 (1984)]. There they react with sulfuric acid in the aerosol layer to form phosphine (2 P3- + 3H2SO4 = 2PH3 + 3SO42-). We take issue with the conclusion of Bains et al. [arXiv:2009.06499 (2020)] that the volcanic rates for such a mechanism would have to be implausibly high. We consider a mantle with the redox state similar to the Earth, magma originating deep in the mantle-a likely scenario for the origin of plume volcanism on Venus-and episodically high but plausible rates of volcanism on a Venus bereft of plate tectonics. We conclude that volcanism could supply an adequate amount of phosphide to produce phosphine. Our conclusion is supported by remote sensing observations of the Venusian atmosphere and surface that have been interpreted as indicative of currently active volcanism.

6.
Geophys Res Lett ; 49(23): e2022GL099285, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37034391

RESUMEN

The Juno spacecraft has been in orbit around Jupiter since 2016. Two flybys of Ganymede were executed in 2021, opportunities realized by evolution of Juno's polar orbit over the intervening 5 years. The geometry of the close flyby just prior to the 34th perijove pass by Jupiter brought the spacecraft inside Ganymede's unique magnetosphere. Juno's payload, designed to study Jupiter's magnetosphere, had ample dynamic range to study Ganymede's magnetosphere. The Juno radio system was used both for gravity measurements and for study of Ganymede's ionosphere. Remote sensing of Ganymede returned new results on geology, surface composition, and thermal properties of the surface and subsurface.

7.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20200107, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33161868

RESUMEN

We aim at investigating whether the chemical composition of the outer region of the protosolar nebula can be consistent with current estimates of the elemental abundances in the ice giants. To do so, we use a self-consistent evolutionary disc and transport model to investigate the time and radial distributions of H2O, CO, CO2, CH3OH, CH4, N2 and H2S, i.e. the main O-, C-, N and S-bearing volatiles in the outer disc. We show that it is impossible to accrete a mixture composed of gas and solids from the disc with a C/H ratio presenting enrichments comparable to the measurements (approx. 70 times protosolar). We also find that the C/N and C/S ratios measured in Uranus and Neptune are compatible with those acquired by building blocks agglomerated from solids condensed in the 10-20 arb. units region of the protosolar nebula. By contrast, the presence of protosolar C/N and C/S ratios in Uranus and Neptune would imply that their building blocks agglomerated from particles condensed at larger heliocentric distances. Our study outlines the importance of measuring the elemental abundances in the ice giant atmospheres, as they can be used to trace the planetary formation location, the origin of their building blocks and/or the chemical and physical conditions of the protosolar nebula. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

8.
Nature ; 445(7123): 61-4, 2007 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17203056

RESUMEN

The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70 degrees north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table.

9.
Nature ; 441(7094): 709-13, 2006 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-16760968

RESUMEN

Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity.

10.
Nature ; 438(7069): 779-84, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16319830

RESUMEN

Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre/química , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Vuelo Espacial , Argón/análisis , Carbono/análisis , Carbono/química , Isótopos/análisis , Metano/análisis , Metano/química , Nitrógeno/análisis , Nitrógeno/química , Vuelo Espacial/instrumentación
11.
Nature ; 438(7069): 765-78, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16319829

RESUMEN

The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre/química , Lluvia , Vuelo Espacial , Viento , Humedad , Hielo/análisis , Metano/análisis , Metano/química
12.
Nature ; 435(7038): 66-9, 2005 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15875014

RESUMEN

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

13.
Science ; 374(6570): 968-972, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34709937

RESUMEN

Jupiter's atmosphere has a system of zones and belts punctuated by small and large vortices, the largest being the Great Red Spot. How these features change with depth is unknown, with theories of their structure ranging from shallow meteorological features to surface expressions of deep-seated convection. We present observations of atmospheric vortices using the Juno spacecraft's Microwave Radiometer. We found vortex roots that extend deeper than the altitude at which water is expected to condense, and we identified density inversion layers. Our results constrain the three-dimensional structure of Jupiter's vortices and their extension below the clouds.

14.
Science ; 245(4914): 141-7, 1989 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-17787873

RESUMEN

The atmospheres of bodies in the outer solar system are distinct in composition from those of the inner planets and provide a complementary set of clues to the origin of the solar system. This article reviews current understanding of the origin and evolution of these atmospheres on the basis of abundances of key molecular species. The systematic enrichment of methane and deuterated species from Jupiter to Neptune is consistent with formation models in which significant infall of icy and rocky planetesimals accompanies the formation of giant planets. The atmosphere of the Saturnian satellite Titan has been strongly modified by photochemistry and interaction with the surface over 4.5 billion years; the combined knowledge of this moon's bulk density and estimates of the composition of the surface and atmosphere provide some constraints on this body's formation. Neptune's satellite Triton is a poorly known object for which it is hoped that substantial information will be gleaned from the Voyager 2 encounter in August 1989. The mean density of the Pluto-Charon system is well known and suggests an origin in the rather water-poor solar nebula. The recent occultation of a star by Pluto provides evidence that carbon monoxide, in addition to methane, may be present in its atmosphere.

15.
Science ; 222(4629): 1229-30, 1983 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-17806723

RESUMEN

It is proposed that Saturn's satellite Titan is covered by an ocean one to several kilometers deep consisting mainly of ethane. If the ocean is in thermodynamic equilibrium with an atmosphere of 3 percent (mole fraction) methane, then its composition is roughly 70 percent ethane, 25 percent methane, and 5 percent nitrogen. Photochemical models predict that ethane is the dominant end product of methane photolysis so that the evolving ocean is both the source and sink for continuing photolysis. The coexisting atmosphere is compatible with Voyager data.

16.
Science ; 275(5300): 642-4, 1997 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-9005844

RESUMEN

Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, which has a temperature structure that is controlled by the absorption of solar and thermal radiation by methane, hydrogen, and organic aerosols into which methane is irreversibly converted by photolysis. Previous studies of Titan's climate evolution have been done with the assumption that the methane abundance was maintained against photolytic depletion throughout Titan's history, either by continuous supply from the interior or by buffering by a surface or near surface reservoir. Radiative-convective and radiative-saturated equilibrium models of Titan's atmosphere show that methane depletion may have allowed Titan's atmosphere to cool so that nitrogen, its main constituent, condenses onto the surface, collapsing Titan into a Triton-like frozen state with a thin atmosphere.


Asunto(s)
Evolución Planetaria , Medio Ambiente Extraterrestre , Metano , Nitrógeno , Saturno , Atmósfera , Fotólisis , Temperatura
17.
Science ; 272(5270): 1919-21, 1996 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-8658164

RESUMEN

Theoretical spectra and evolutionary models that span the giant planet-brown dwarf continuum have been computed based on the recent discovery of the brown dwarf Gliese 229 B. A flux enhancement in the 4- to 5-micrometer wavelength window is a universal feature from jovian planets to brown dwarfs. Model results confirm the existence of methane and water in the spectrum of Gliese 229 B and indicate that its mass is 30 to 55 jovian masses. Although these calculations focus on Gliese 229 B, they are also meant to guide future searches for extrasolar giant planets and brown dwarfs.


Asunto(s)
Astronomía , Medio Ambiente Extraterrestre , Metano/análisis , Agua/análisis , Fenómenos Astronómicos , Atmósfera
18.
Science ; 246(4936): 1459-66, 1989 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17756000

RESUMEN

Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.

19.
Science ; 364(6445)2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30923171

RESUMEN

Saturn's main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons' morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons' surfaces are determined by two competing processes: contamination by a red material formed in Saturn's main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.

20.
Astrobiology ; 8(2): 273-87, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18393693

RESUMEN

Organic macromolecules ("complex tholins") were synthesized from a 0.95 N(2)/0.05 CH(4) atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of approximately 60+/-10 kJ mol(-1). These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials--a necessary step toward the formation of biological molecules--is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.


Asunto(s)
Frío , Planeta Tierra , Sustancias Macromoleculares/análisis , Saturno , Calibración , Hidrólisis , Cinética , Espectrometría de Masas , Estándares de Referencia , Soluciones , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda