Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Kidney Int ; 101(2): 349-359, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34560138

RESUMEN

Amyloid A amyloidosis is a serious clinical condition resulting from the systemic deposition of amyloid A originating from serum amyloid A proteins with the kidneys being the most commonly and earliest affected organ. Previously described amyloid A amyloidosis is linked to increased production and deposition of serum amyloid A proteins secondary to inflammatory conditions arising from infectious, metabolic, or genetic causes. Here we describe a family with primary amyloid A amyloidosis due to a chr11:18287683 T>C (human genome version19) mutation in the SAA1 promoter linked to the amyloidogenic SAA1.1 haplotype. This condition leads to a doubling of the basal SAA1 promoter activity and sustained elevation of serum amyloid A levels that segregated in an autosomal dominant pattern in 12 genetically affected and in none of six genetically unaffected relatives, yielding a statistically significant logarithm of odds (LOD) score over 5. Affected individuals developed proteinuria, chronic kidney disease and systemic deposition of amyloid composed specifically of the SAA1.1 isoform. Tocilizumab (a monoclonal antibody against the interleukin-6 receptor) had a beneficial effect when prescribed early in the disease course. Idiopathic forms represent a significant and increasing proportion (15-20%) of all diagnosed cases of amyloid A amyloidosis. Thus, genetic screening of the SAA1 promoter should be pursued in individuals with amyloid A amyloidosis and no systemic inflammation, especially if there is a positive family history.


Asunto(s)
Amiloidosis , Amiloidosis/complicaciones , Humanos , Mutación , Regiones Promotoras Genéticas , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
2.
Cell Mol Life Sci ; 77(14): 2815-2838, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31583425

RESUMEN

Biological effects of high fluence low-power (HFLP) lasers have been reported for some time, yet the molecular mechanisms procuring cellular responses remain obscure. A better understanding of the effects of HFLP lasers on living cells will be instrumental for the development of new experimental and therapeutic strategies. Therefore, we investigated sub-cellular mechanisms involved in the laser interaction with human hepatic cell lines. We show that mitochondria serve as sub-cellular "sensor" and "effector" of laser light non-specific interactions with cells. We demonstrated that despite blue and red laser irradiation results in similar apoptotic death, cellular signaling and kinetic of biochemical responses are distinct. Based on our data, we concluded that blue laser irradiation inhibited cytochrome c oxidase activity in electron transport chain of mitochondria. Contrary, red laser triggered cytochrome c oxidase excessive activation. Moreover, we showed that Bcl-2 protein inhibited laser-induced toxicity by stabilizing mitochondria membrane potential. Thus, cells that either overexpress or have elevated levels of Bcl-2 are protected from laser-induced cytotoxicity. Our findings reveal the mechanism how HFLP laser irradiation interfere with cell homeostasis and underscore that such laser irradiation permits remote control of mitochondrial function in the absence of chemical or biological agents.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Transporte de Electrón/efectos de la radiación , Terapia por Luz de Baja Intensidad , Fototerapia , Apoptosis/efectos de la radiación , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Transporte de Electrón/genética , Regulación de la Expresión Génica/efectos de la radiación , Células Hep G2 , Humanos , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806448

RESUMEN

Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.


Asunto(s)
Hepatocitos/inmunología , Hepatocitos/metabolismo , Interferones/genética , Interferones/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Línea Celular , Expresión Génica , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/deficiencia , Subunidad beta del Receptor de Interleucina-10/deficiencia , Subunidad beta del Receptor de Interleucina-10/genética , Subunidad beta del Receptor de Interleucina-10/metabolismo , Interleucinas/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638908

RESUMEN

Heterozygotes for Z or S alleles of alpha-1-antrypsin (AAT) have low serum AAT levels. Our aim was to compare the risk of hepatocellular carcinoma (HCC) in patients with liver cirrhosis carrying the SERPINA1 MM, MZ and MS genotypes. The study groups consisted of 1119 patients with liver cirrhosis of various aetiologies, and 3240 healthy individuals served as population controls. The MZ genotype was significantly more frequent in the study group (55/1119 vs. 87/3240, p < 0.0001). The MS genotype frequency was comparable in controls (32/119 vs. 101/3240, p = 0.84). MZ and MS heterozygotes had lower serum AAT level than MM homozygotes (medians: 0.90 g/L; 1.40 g/L and 1.67 g/L; p < 0.001 for both). There were significantly fewer patients with HCC in the cirrhosis group among MZ and MS heterozygotes than in MM homozygotes (5/55 and 1/32 respectively, vs. 243/1022, p < 0.01 for both). The risk of HCC was lower in MZ and MS heterozygotes than in MM homozygotes (OR 0.3202; 95% CI 0.1361-0.7719 and OR 0.1522; 95% CI 0.02941-0.7882, respectively). Multivariate analysis of HCC risk factors identified MZ or MS genotype carriage as a protective factor, whereas age, male sex, BMI and viral aetiology of cirrhosis increased HCC risk.


Asunto(s)
Carcinoma Hepatocelular/genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , alfa 1-Antitripsina/genética , Alelos , Índice de Masa Corporal , Carcinoma Hepatocelular/complicaciones , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/complicaciones , Masculino , Persona de Mediana Edad , Análisis Multivariante , Factores de Riesgo , Factores Sexuales , alfa 1-Antitripsina/sangre
5.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872159

RESUMEN

The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.


Asunto(s)
Inmunidad Celular/efectos de los fármacos , Gases em Plasma/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
6.
Cell Physiol Biochem ; 52(1): 119-140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30790509

RESUMEN

BACKGROUND/AIMS: Alteration of cancer cell redox status has been recognized as a promising therapeutic implication. In recent years, the emerged field of non-thermal plasma (NTP) has shown considerable promise in various biomedical applications, including cancer therapy. However, understanding the molecular mechanisms procuring cellular responses remains incomplete. Thus, the aim of this study was a rigorous biochemical analysis of interactions between NTP and liver cancer cells. METHODS: The concept was validated using three different cell lines. We provide several distinct lines of evidence to support our findings; we use various methods (epifluorescent and confocal microscopy, clonogenic and cytotoxicity assays, Western blotting, pharmacological inhibition studies, etc.). RESULTS: We assessed the influence of NTP on three human liver cancer cell lines (Huh7, Alexander and HepG2). NTP treatment resulted in higher anti-proliferative effect against Alexander and Huh7 relative to HepG2. Our data clearly showed that the NTP-mediated alternation of mitochondrial membrane potential and dynamics led to ROS-mediated apoptosis in Huh7 and Alexander cells. Interestingly, plasma treatment resulted in p53 down-regulation in Huh7 cells. High levels of Bcl-2 protein expression in HepG2 resulted in their resistance in response to oxidative stress- mediated by plasma. CONCLUSION: We show thoroughly time- and dose-dependent kinetics of ROS accumulation in HCC cells. Furthermore, we show nuclear compartmentalization of the superoxide anion triggered by NTP. NTP induced apoptotic death in Huh7 liver cancer cells via simultaneous downregulation of mutated p53, pSTAT1 and STAT1. Contrary, hydrogen peroxide treatment results in autophagic cell death. We disclosed detailed mechanisms of NTP-mediated alteration of redox signalling in liver cancer cells.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Muerte Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Oxidación-Reducción/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
7.
J Pathol ; 241(1): 104-114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27741349

RESUMEN

Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Células Acinares/metabolismo , Hepcidinas/deficiencia , Sobrecarga de Hierro/complicaciones , Pancreatitis Crónica/etiología , Animales , Apoptosis/fisiología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Hepcidinas/genética , Hepcidinas/fisiología , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Estrés Oxidativo/fisiología , Páncreas/ultraestructura , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología
8.
J Hepatol ; 61(3): 633-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24816174

RESUMEN

BACKGROUND & AIMS: Hepcidin is the central regulator of iron homeostasis and altered hepcidin signalling results in both hereditary and acquired iron overload. While the association between iron overload and development of end-stage liver disease is well established, the underlying mechanisms are largely unknown. To improve that, we analysed hepcidin knockout (KO) mice as a model of iron overload-associated liver disease. METHODS: Hepcidin wild type (WT) and KO mice fed with 3% carbonyl iron-containing diet starting at one month of age were compared to age-matched animals kept on standard chow. Liver histology and serum parameters were used to assess the extent of liver injury and fibrosis. Iron distribution was determined by subcellular fractionation and electron microscopy. RESULTS: Among mice kept on iron-rich diet, 6 months old hepcidin KO mice (vs. WT) displayed profound hepatic iron overload (3,186 ± 411 vs. 1,045 ± 159 µg/mg tissue, p<0.005), elevated liver enzymes (ALT: KO 128 ± 6, WT 56 ± 5 IU/L, p<0.05), mild hepatic inflammation and hepatocellular apoptosis. Twelve, but not six months old KO mice fed with iron-rich diet developed moderate liver fibrosis. The liver injury was accompanied by a marked lysosomal iron overload and lysosomal fragility with release of cathepsin B into the cytoplasm. Increased p62 levels and autofluorescent iron complexes suggested impaired protein degradation. As a mechanism leading to lysosomal iron overload, the autophagy (lysosomal influx) was increased. CONCLUSIONS: Hepcidin KO mice represent a novel model of iron overload-related liver diseases and implicate lysosomal injury as a crucial event in iron toxicity.


Asunto(s)
Hepcidinas/deficiencia , Hierro de la Dieta/efectos adversos , Hierro/metabolismo , Cirrosis Hepática/etiología , Lesión Pulmonar/etiología , Lisosomas/metabolismo , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/fisiología , Hepcidinas/genética , Hepcidinas/fisiología , Homeostasis/fisiología , Hígado/enzimología , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/fisiopatología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo
9.
Biomater Biosyst ; 14: 100093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38585282

RESUMEN

Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.

10.
Discov Nano ; 19(1): 106, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907808

RESUMEN

In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.

11.
Nanoscale Adv ; 5(16): 4250-4268, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37560414

RESUMEN

Iron oxide nanoparticles (IONPs) are being actively researched in various biomedical applications, particularly as magnetic resonance imaging (MRI) contrast agents for diagnosing various liver pathologies like nonalcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cirrhosis. Emerging evidence suggests that IONPs may exacerbate hepatic steatosis and liver injury in susceptible livers such as those with nonalcoholic fatty liver disease. However, our understanding of how IONPs may affect steatotic cells at the sub-cellular level is still fragmented. Generally, there is a lack of studies identifying the molecular mechanisms of potential toxic and/or adverse effects of IONPs on "non-heathy" in vitro models. In this study, we demonstrate that IONPs, at a dose that does not cause general toxicity in hepatic cells (Alexander and HepG2), induce significant toxicity in steatotic cells (cells loaded with non-toxic doses of palmitic acid). Mechanistically, co-treatment with PA and IONPs resulted in endoplasmic reticulum (ER) stress, accompanied by the release of cathepsin B from lysosomes to the cytosol. The release of cathepsin B, along with ER stress, led to the activation of apoptotic cell death. Our results suggest that it is necessary to consider the interaction between IONPs and the liver, especially in susceptible livers. This study provides important basic knowledge for the future optimization of IONPs as MRI contrast agents for various biomedical applications.

12.
ACS Biomater Sci Eng ; 9(5): 2408-2425, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001010

RESUMEN

It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.


Asunto(s)
Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Dinámicas Mitocondriales , Colágeno
13.
Adv Drug Deliv Rev ; 197: 114828, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075952

RESUMEN

Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.


Asunto(s)
Nanomedicina , Nanopartículas , Humanos , Nanomedicina/métodos , Nanotecnología/métodos , Nanopartículas/toxicidad , Nanopartículas/química , Lisosomas
14.
Sci Rep ; 13(1): 10818, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402779

RESUMEN

Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.


Asunto(s)
Campos Electromagnéticos , Campos Magnéticos , Humanos , Células HeLa
15.
BMC Gastroenterol ; 12: 147, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23078008

RESUMEN

BACKGROUND: Keratins 8/18 (K8/K18) are established hepatoprotective proteins and K8/K18 variants predispose to development and adverse outcome of multiple liver disorders. The importance of K8/K18 in alcoholic liver disease as well as in established cirrhosis remains unknown. METHODS: We analyzed the K8 mutational hot-spots in 261 prospectively followed-up patients with alcoholic cirrhosis (mean follow-up 65 months). PCR-amplified samples were pre-screened by denaturing high-performance liquid chromatography and conspicuous samples were sequenced. RESULTS: 67 patients developed hepatocellular carcinoma (HCC) and 133 died. Fourteen patients harbored amino-acid-altering K8 variants (5xG62C, 8xR341H). The presence of K8 variants did not associate with development of HCC (log-rank=0.5) or death (log-rank=0.7) and no significant associations were obtained for the single K8 variants after a correction for multiple testing was performed. CONCLUSIONS: Keratin variants are expressed in a low percentage of patients with alcoholic cirrhosis and do not influence HCC development. Further studies conducted in larger prospective cohorts are needed to find out whether presence of K8 R341H variant predispose to non-HCC-related liver mortality.


Asunto(s)
Carcinoma Hepatocelular/genética , Queratina-8/genética , Cirrosis Hepática Alcohólica/genética , Neoplasias Hepáticas/genética , Distribución de Chi-Cuadrado , Análisis Mutacional de ADN , Exones , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Mutación , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Estadísticas no Paramétricas
16.
Acta Biomater ; 146: 10-22, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35523414

RESUMEN

DNA nanotechnology has yielded remarkable advances in  composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.


Asunto(s)
Nanoestructuras , ADN/química , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/química , Nanotecnología/métodos
17.
PLoS One ; 16(1): e0244934, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411729

RESUMEN

Liver stiffness is a reliable non-invasive predictor of Hepatic Venous Pressure Gradient (HVPG) above 10 mm Hg. However, it failed to predict higher thresholds of HVPG. Our aim was to investigate whether liver stiffness and selected previously published non-invasive blood biomarkers could predict higher HVPG thresholds in liver transplant candidates without ongoing alcohol use. One hundred and nine liver transplant candidates with liver cirrhosis of various aetiologies underwent direct HVPG measurement, liver stiffness measurement by 2D shear-wave elastography (Aixplorer Multiwave, Supersonic Imagine, France) and assessment of blood HVPG biomarkers (osteopontin, VCAM-1, IL-6, TNF-α, IL-1ra/IL-1F3 and ELF score). The correlation between liver stiffness and HVPG was linear up to 30 mm Hg of HVPG (r = 0.765, p < 0.0001). The regression lines had similar slopes for HVPG values below and above 16 mm Hg (p > 0.05) and the correlation in patients with HVPG <16 mm Hg (r = 0.456, p = 0.01) was similar to patients with HVPG ≥ 16 mm Hg (r = 0.499, p < 0.0001). The correlation was similar in the subgroup patients with alcoholic (r = 0.718, p < 0.0001), NASH (r = 0.740, p = 0.008), cryptogenic (r = 0.648, p = 0,0377), cholestatic and autoimmune (r = 0.706, p < 0.0001) and viral cirrhosis (r = 0.756, p < 0.0001). Liver stiffness distinguished patients with HVPG above 16, and 20 mm Hg with AUROCs 0.90243, and 0.86824, sensitivity 0.7656, and 0.7027, and specificity 0.9333, and 0.8750. All studied blood biomarkers correlated better with liver stiffness than with HVPG and their AUROCs did not exceed 0.8 at both HVPG thresholds. Therefore, a composite predictor superior to liver stiffness could not be established. We conclude that liver stiffness is a clinically reliable predictor of higher HVPG thresholds in non-drinking subjects with advanced liver cirrhosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Elasticidad/fisiología , Hígado/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , República Checa , Femenino , Fibrosis/patología , Venas Hepáticas/patología , Humanos , Hipertensión Portal/patología , Modelos Lineales , Cirrosis Hepática/patología , Masculino , Persona de Mediana Edad , Presión Portal/fisiología , Estudios Prospectivos , Sensibilidad y Especificidad , Presión Venosa/fisiología
18.
ACS Appl Mater Interfaces ; 13(39): 46375-46390, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569777

RESUMEN

DNA nanostructures (DNs) can be designed in a controlled and programmable manner, and these structures are increasingly used in a variety of biomedical applications, such as the delivery of therapeutic agents. When exposed to biological liquids, most nanomaterials become covered by a protein corona, which in turn modulates their cellular uptake and the biological response they elicit. However, the interplay between living cells and designed DNs are still not well established. Namely, there are very limited studies that assess protein corona impact on DN biological activity. Here, we analyzed the uptake of functionalized DNs in three distinct hepatic cell lines. Our analysis indicates that cellular uptake is linearly dependent on the cell size. Further, we show that the protein corona determines the endolysosomal vesicle escape efficiency of DNs coated with an endosome escape peptide. Our study offers an important basis for future optimization of DNs as delivery systems for various biomedical applications.


Asunto(s)
ADN/metabolismo , Endosomas/metabolismo , Nanoestructuras/química , Corona de Proteínas/metabolismo , Adsorción , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Línea Celular Tumoral , ADN/química , Humanos , Lisosomas/metabolismo , Conformación de Ácido Nucleico , Corona de Proteínas/química
20.
J Control Release ; 328: 59-77, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32860925

RESUMEN

Iron oxide nanoparticles (IONPs) were the first generation of nanomaterials that reached real clinic use. Particularly, several IONPs-based magnetic resonance imaging contrast agents gained approval by US Food and Drug Administration (FDA). However, latter body of evidence revealed the overlooked side effects of IONPs, resulting in their withdrawal. Emerging evidence suggests that this happened due to poor understanding of the mechanisms by which IONPs act at the cellular and sub-cellular levels. Recent studies indicate that better understanding of fundamental signal modulations induced by nanomaterials is essential to overcome the clinical problems with nanoparticles. Therefore, in this article we critically review potential mechanisms of IONPs-cell interactions and challenges related with their identification. We describe mechanisms of IONPs-induced toxicity. Ultimately, we demonstrate that knowledge of cellular mechanisms of IONPs action helped to overcome certain translation problems in nanomedicine - we explore potential causes and challenges associated with poor clinical performance of IONPs and propose outlook of how to overcome problems in the field. Our critical analysis implies that a clear understanding of molecular mechanisms of IONPs-cell interactions will provide a basement to increase the likelihood for clinical success of IONPs.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Medios de Contraste , Compuestos Férricos , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda