Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; : e2401377, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778735

RESUMEN

Using nanoparticle surfactants to stabilize the liquid-liquid interface has attracted significant attention for developing all-liquid constructs including emulsions and liquid devices. Here, an efficient strategy is demonstrated to stabilize complex emulsions that consist of multiphase droplets by using the co-assembly between the cellulose nanocrystal and amine-functionalized polystyrene. Cellulose nanocrystal surfactants (CNCSs) form and assembly in situ at the specified area of emulsion interface, showing a unique pH responsiveness due to their dynamic nature and allowing the reconfiguration of complex emulsion from encapsulated to Janus structures. Such complex emulsions can be further used as the templates to fabricate polymeric particles with hollow, semi-spherical, and spherical shapes on large scale. These findings establish a promising platform for designing intelligent soft matter that can be used in microreactors, sensors, and anisotropic materials.

2.
Langmuir ; 40(33): 17747-17752, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115928

RESUMEN

Cation-π and charge-transfer (CT) interactions are pervasive with significant implications in the fields of chemistry, materials science, and biology. However, much less is known about the construction of interfacial assemblies based on the two interactions. Here, by combining cation-π and CT interactions between an acceptor molecule, dicationic naphthalenediimide, and an aromatic donor, pyrene-terminated poly-l-lactic acid, we report the generation of supramolecular complex surfactants (SCSs) in situ at the toluene-water interface. The utilization of SCSs as building blocks enables the fabrication of interfacial assemblies including 2D films, emulsions, and structured liquids. By modification of the redox state of the acceptor molecules under chemical stimulus, the association/assembly and dissociation/disassembly of SCSs can be precisely regulated, imparting intriguing redox-responsive properties to the resulting assemblies.

3.
Adv Mater ; 36(27): e2403015, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655760

RESUMEN

Welding of thermoplastics is a common practice in many industrial sectors, but it has yet to be realized with fluids. Here, the thermal welding of liquids by using the assembly and jamming of nanoparticle surfactants (NPSs) at liquid-liquid interfaces is reported. By fine-tuning the dynamic interaction strength within NPSs, the interfacial activity of NPSs, as well as the binding energy of NPSs to the interface can be precisely controlled, leading to a dynamic exchange of NPSs, maximizing the reduction in the interfacial energy. With NPSs jammed at the interface, the structures of liquids can be manipulated to complex geometries by applying an external force and, due to the temperature responsiveness of NPSs, when bringing liquids into contact and heating the system, welding of liquids can be achieved. This work provides a straightforward strategy for the construction of modular all-liquid fluidics, opening up numerous opportunities in fields like biotechnology, healthcare, and materials science.

4.
Nat Commun ; 15(1): 1058, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316759

RESUMEN

Droplet networks stabilized by lipid interfacial bilayers or colloidal particles have been extensively investigated in recent years and are of great interest for compartmentalized reactions and biological functions. However, current design strategies are disadvantaged by complex preparations and limited droplet size. Here, by using the assembly and jamming of cucurbit[8]uril surfactants at the oil-water interface, we show a novel means of preparing droplet networks that are multi-responsive, reconfigurable, and internally connected over macroscopic distances. Openings between the droplets enable the exchange of matter, affording a platform for chemical reactions and material synthesis. Our work requires only a manual compression to construct complex patterns of droplet networks, underscoring the simplicity of this strategy and the range of potential applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda