Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226031

RESUMEN

Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda