Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Chem Chem Phys ; 26(6): 5059-5069, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38258542

RESUMEN

The decomposition of methanol-d4 (CD3OD) on Rh nanoclusters grown by the deposition of Rh vapors onto an ordered thin film of Al2O3/NiAl(100) was studied, with various surface-probe techniques and largely under near-ambient-pressure (NAP) conditions. The results showed a superior reactivity of small Rh clusters (diameter < 1.5 nm) exposed to CD3OD at 5 × 10-3-0.1 mbar at 400 K; the gaseous production of CO and D2 from decomposed methanol-d4 per Rh surface site on the small Rh clusters with diameters of ∼1.1 nm was nearly 8 times that on large ones with diameters of ∼3.5 nm. The promotion of reactivity with decreased cluster size under NAP conditions was evidently greater than that under ultrahigh vacuum conditions. Moreover, the concentration of atomic carbon (C*; where * denotes adsorbate)-a key catalyst poisoner-yielded from the dissociation of CO* from dehydrogenated methanol-d4 was significantly smaller on small clusters (diameter < 1.5 nm). The NAP size effect on methanol-d4 decomposition involved the surface hydroxyl (OH*) from the little co-adsorbed water (H2O*) that was dissociated at a probability dependent on the cluster size. H2O* was more likely dissociated into OH* on small Rh clusters, by virtue of their more reactive d-band structure, and the OH* then effectively promoted the O-D cleavage of methanol-d4, as the rate-determining step, and thus the reaction probability; on the other hand, the OH* limited CO* dissociation on small Rh clusters via both adsorbate and lateral effects. These results suggest that the superior properties of small Rh clusters in both reactivity and anti-poisoning would persist and be highly applicable under "real-world" catalysis conditions.

2.
Environ Sci Technol ; 57(34): 12847-12857, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578486

RESUMEN

Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO3-) as an example, the results indicate that HCO3- can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3- plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3-. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.


Asunto(s)
Compuestos de Manganeso , Óxidos , Óxidos/química , Compuestos de Manganeso/química , Fenol , Fenoles , Oxidación-Reducción , Agua
3.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129140

RESUMEN

We have studied the decomposition of methanol-d4 on thin film Al2O3/NiAl(100) under near-ambient-pressure conditions, with varied surface-probe techniques and calculations based on density-functional theory. Methanol-d4 neither adsorbed nor reacted on Al2O3/NiAl(100) at 400 K under ultrahigh vacuum conditions, whereas they dehydrogenated, largely to methoxy-d3 (CD3O*, * denoting adsorbates) and formaldehyde-d2 (CD2O*), on the surface when the methanol-d4 partial pressure was increased to 10-3 mbar and above. The dehydrogenation was facilitated by hydroxyl (OH* or OD*) from the dissociation of little co-adsorbed water; a small fraction of CD2O* interacted further with OH* (OD*) to form, via intermediate CD2OOH* (CD2OOD*), formic acid (DCOOH* or DCOOD*). A few surface carbonates were also yielded, likely on the defect sites of Al2O3/NiAl(100). The results suggest that alumina not only supports metal clusters but also participates in reactions under realistic catalytic conditions. One may consider accordingly the multiple functions of alumina while designing ideal catalysts.

4.
Nucleic Acids Res ; 49(D1): D1268-D1275, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270889

RESUMEN

DNA methylation is an important epigenetic regulator in gene expression and has several roles in cancer and disease progression. MethHC version 2.0 (MethHC 2.0) is an integrated and web-based resource focusing on the aberrant methylomes of human diseases, specifically cancer. This paper presents an updated implementation of MethHC 2.0 by incorporating additional DNA methylomes and transcriptomes from several public repositories, including 33 human cancers, over 50 118 microarray and RNA sequencing data from TCGA and GEO, and accumulating up to 3586 manually curated data from >7000 collected published literature with experimental evidence. MethHC 2.0 has also been equipped with enhanced data annotation functionality and a user-friendly web interface for data presentation, search, and visualization. Provided features include clinical-pathological data, mutation and copy number variation, multiplicity of information (gene regions, enhancer regions, and CGI regions), and circulating tumor DNA methylation profiles, available for research such as biomarker panel design, cancer comparison, diagnosis, prognosis, therapy study and identifying potential epigenetic biomarkers. MethHC 2.0 is now available at http://awi.cuhk.edu.cn/∼MethHC.


Asunto(s)
Biomarcadores de Tumor/genética , Metilación de ADN , Bases de Datos Genéticas , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Biomarcadores de Tumor/metabolismo , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Elementos de Facilitación Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Análisis por Micromatrices , Anotación de Secuencia Molecular , Mutación , Neoplasias/clasificación , Neoplasias/diagnóstico , Neoplasias/metabolismo , Programas Informáticos , Transcriptoma
5.
Nucleic Acids Res ; 48(D1): D148-D154, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31647101

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs (typically consisting of 18-25 nucleotides) that negatively control expression of target genes at the post-transcriptional level. Owing to the biological significance of miRNAs, miRTarBase was developed to provide comprehensive information on experimentally validated miRNA-target interactions (MTIs). To date, the database has accumulated >13,404 validated MTIs from 11,021 articles from manual curations. In this update, a text-mining system was incorporated to enhance the recognition of MTI-related articles by adopting a scoring system. In addition, a variety of biological databases were integrated to provide information on the regulatory network of miRNAs and its expression in blood. Not only targets of miRNAs but also regulators of miRNAs are provided to users for investigating the up- and downstream regulations of miRNAs. Moreover, the number of MTIs with high-throughput experimental evidence increased remarkably (validated by CLIP-seq technology). In conclusion, these improvements promote the miRTarBase as one of the most comprehensively annotated and experimentally validated miRNA-target interaction databases. The updated version of miRTarBase is now available at http://miRTarBase.cuhk.edu.cn/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , MicroARNs/metabolismo , MicroARN Circulante/metabolismo , Minería de Datos , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , Interfaz Usuario-Computador
6.
J Chem Phys ; 155(7): 074701, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418937

RESUMEN

We studied the dissociation of water (H2O*, with * denoting adspecies) on atomic oxygen (O*)-covered Rh nanoclusters (RhO* ) supported on a graphene film grown on a Ru(0001) surface [G/Ru(0001)] under ultrahigh-vacuum conditions and with varied surface-probe techniques and calculations based on density-functional theory. The graphene had a single rotational domain; its lattice expanded by about 5.7% to match the Ru substrate structurally better. The Rh clusters were grown by depositing Rh vapors onto G/Ru(0001); they had an fcc phase and grew in (111) orientation. Water adsorbed on the Rh clusters was dissociated exclusively in the presence of O*, like that on a Rh(111) single-crystal surface. Contrary to the case on Rh(111)O* , excess O* (even at a saturation level) on small RhO* clusters (diameter of 30-34 Å) continued to promote, instead of inhibiting, the dissociation of water; the produced hydroxyl (OH*) increased generally with the concentration of O* on the clusters. The difference results from more reactive O* on the RhO* clusters. O* on RhO* clusters activated the dissociation via both the formation of hydrogen bonds with H2O* and abstraction of H directly from H2O*, whereas O* on Rh(111)O* assisted the dissociation largely via the formation of hydrogen bonds, which was readily obstructed with an increased O* coverage. As the disproportionation (2 OH* → H2O* + O*) is endothermic on the RhO* clusters but exothermic on Rh(111)O* , OH* produced on RhO* clusters showed a thermal stability superior to that on the Rh(111)O* surface-thermally stable up to 400 K.

7.
J Chem Phys ; 151(22): 224707, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31837670

RESUMEN

Pt and Rh nanoclusters, grown on deposition of Pt and Rh vapors onto graphene/Pt(111), show separate reactivity toward the decomposition of methanol-d4. The Pt (Rh) clusters had a mean diameter 2.0-3.5 nm (2.1-4.0 nm) and height 0.45-0.94 nm (0.41-0.9 nm) evolving with the coverage; they were structurally ordered, having an fcc phase and growing in (111) orientation, and had lattice constants similar to their bulk values. Methanol-d4 on the Pt clusters did not decompose but desorbed mostly, disparate from that on Pt(111) surface; the disparity arose as the adsorption energies of methanol-d4 on most surface sites of the Pt clusters became smaller than their single crystal counterpart. This size effect, nevertheless, did not apply on the Rh clusters, despite their similar atomic stacking; the Rh clusters showed a reactivity similar to that of the Rh(111) surface because the adsorption energies of methanol-d4 on both Rh clusters and Rh(111) are comparable. The distinct size dependence was rationalized through their electronic structures and charge distribution of Fukui function mapping. Our results suggest that reactive transition metals do not necessarily become more reactive while they are scaled down to nanoscale; their reactivity evolves with their size in a manner largely dependent on their electronic nature.

8.
Phys Chem Chem Phys ; 20(16): 11260-11272, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29634059

RESUMEN

The decomposition of methanol-d4 that was adsorbed on Au-Rh bimetallic nanoclusters grown by the sequential deposition of Au and Rh vapors onto ordered thin-film Al2O3/NiAl(100) at 300 K, occurred by means of dehydrogenation and primarily on the surface Rh. Nevertheless, the surface Rh atoms were not equally reactive; their reactivity altered with both structural and electronic effects arising from the alloying. The Au deposited on Rh clusters decorated the surface and deactivated Rh by not only directly obstructing them but also by neighboring them. As the initially incorporated Au tended to aggregate around reactive low-coordinated Rh atoms, such as corner Rh atoms, the reactivity of the cluster, indicated by the CO and deuterium (D2) produced per surface Rh, decreased markedly. In contrast, the Rh deposited on Au clusters promoted their reactivity. The reactivity was sharply enhanced by a few incorporated Rh atoms, as they preferentially decorated the edge Au atoms, resulting in their lower coordination, more positive charge, higher energetic d-band centers, and high reactivity. On the reactive Rh, the scission of the O-D bond in the initial dehydrogenation of methanol-d4 became more preferential than the competing desorption. The further incorporated Rh failed to promote the reactivity, but the clusters remained more reactive than those formed by Rh clusters incorporating Au as their structuring involved an active atomic segregation that yielded more low-coordinated and reactive surface Rh.

9.
Phys Chem Chem Phys ; 20(2): 1261-1266, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29250624

RESUMEN

The dissociation of water molecules absorbed on a cleaved non-polar GaN(11[combining macron]00) surface was studied primarily with synchrotron-based photoemission spectra and density-functional-theory calculations. The adsorbed water molecules are spontaneously dissociated into hydrogen atoms and hydroxyl groups at either 300 or 130 K, which implies a negligible activation energy (<11 meV) for the dissociation. The produced H and OH were bound to the surface nitrogen and gallium on GaN(11[combining macron]00) respectively. These results highlight the promising applications of the non-polar GaN(11[combining macron]00) surface in water dissociation and hydrogen generation.

10.
Phys Chem Chem Phys ; 19(22): 14566-14579, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28537293

RESUMEN

Self-organized alloying of Au with Rh in nanoclusters on an ordered thin film of Al2O3/NiAl(100) was investigated via various surface probe techniques under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed on the sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. The formation was more effective on the oxide seeded with Rh, since all post-deposited Au joined the pregrown Rh clusters; for metal deposition in the reverse order, some separate Rh clusters were formed. The contrasting behavior is rationalized through the easier nucleation of Rh on the oxide surface, due to the stronger Rh-oxide and Rh-Rh bonds. The alloying in the clusters proceeded, regardless of the order of metal deposition, toward a specific structure: an fcc phase, (100) orientation and Rh core-Au shell structure. The orientation, structural ordering and lattice parameters of the Au-Rh bimetallic clusters resembled Rh clusters, rather than Au clusters, on Al2O3/NiAl(100), even with Rh in a minor proportion. The Rh-predominated core-shell structuring corresponds to the binding energies in the order Rh-Rh > Rh-Au > Au-Au. The core-shell segregation, although active, was somewhat kinetically hindered, since elevating the sample temperature induced further encapsulation of Rh. The bimetallic clusters became thermally unstable above 500 K, for which both Rh and Au atoms began to diffuse into the substrate. Moreover, the electronic structures of surface elements on the bimetallic clusters, controlled by both structural and electronic effects, show a promising reactivity.

11.
J Chem Phys ; 147(4): 044704, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28764366

RESUMEN

The surface structures and compositions of Au-Rh bimetallic nanoclusters on an ordered thin film of Al2O3/NiAl(100) were investigated, primarily with infrared reflection absorption spectra and temperature-programmed desorption of CO as a probe molecule under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed by sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. Alloying in the clusters was active and proceeded toward a specific structure-a fcc phase, (100) orientation, and Rh core-Au shell structure, regardless of the order of metal deposition. For Au clusters incorporating deposited Rh, the Au atoms remained at the cluster surface through position exchange and became less coordinated; for deposition in reverse order, deposited Au simply decorated the surfaces of Rh clusters. Both adsorption energy and infrared absorption intensity were enhanced for CO on Au sites of the bimetallic clusters; both of them are associated with the bonding to Rh and also a decreased coordination number of CO-binding Au. These enhancements can thus serve as a fingerprint for alloying and atomic inter-diffusion in similar bimetallic systems.

12.
Int J Biol Macromol ; 276(Pt 2): 133859, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009260

RESUMEN

Intestinal immunity plays a pivotal role in overall immunological defenses, constructing mechanisms against pathogens while maintaining balance with commensal microbial communities. Existing therapeutic interventions may lead to drug resistance and potential toxicity when immune capacity is compromised. Dendrobium officinale, a traditional Chinese medicine, contains components identified to bolster immunity. Employing network pharmacology strategies, this study identified constituents of Dendrobium officinale and their action targets in the TCMSP and Swiss Target Prediction databases, and compared them with intestinal immunity-related targets. Protein-protein interaction networks revealed the core targets of Dendrobium officinale polysaccharides, encompassing key pathways such as cell proliferation, inflammatory response, and immune reactions, particularly in association with the Toll-like receptor 4. Molecular docking and molecular dynamics simulation further confirmed the high affinity and stability between Dendrobium officinale polysaccharides and Toll-like receptor 4. In vivo experiments demonstrated that Dendrobium officinale polysaccharides modulates the expression of Toll-like receptor 4 and its downstream key proteins in the colonic mucosa of mice. Consequently, these findings suggest that Dendrobium officinale polysaccharides may serve as a potential modulator for intestinal immune functions, with its mechanism potentially related to the Toll-like receptor 4.

13.
Nat Commun ; 15(1): 653, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253575

RESUMEN

Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.

14.
J Hazard Mater ; 458: 131927, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379593

RESUMEN

Ferrate (Fe(VI)) has aroused great research interest in recent years due to its environmental benignancy and lower potential in disinfection by-product generation. However, the inevitable self-decomposition and lower reactivity under alkaline conditions severely restrict the utilization and decontamination efficiency of Fe(VI). Here, we discovered that Ru(III), a representative transition metal, could effectively activate Fe(VI) to degrade organic micropollutants, and its performance on Fe(VI) activation exceeded that of previously reported metal activators. The high-valent metal species (i.e., Fe(IV)/Fe(V) and high-valent Ru species) made a major contribution to SMX removal by Fe(VI)-Ru(III). Density functional theory calculations indicated the function of Ru(III) as a two-electron reductant, leading to the production of Ru(V) and Fe(IV) as the predominant active species. The characterization analyses proved that Ru species was deposited on ferric (hydr)oxides as Ru(III), indicating the possibility of Ru(III) as an electron shuttle with the rapid valence circulation between Ru(V) and Ru(III). This study not only develops an efficient way to activate Fe(VI) but also offers a thorough understanding of Fe(VI) activation induced by transition metals.

15.
J Hazard Mater ; 445: 130440, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36446311

RESUMEN

In this work, a g-C3N4 supported NiCx nanoclusters catalyst (NiCx-CN) was developed, and its performance in activating peroxymonosulfate (PMS) was evaluated. Mechanism investigation stated that although singlet oxygen (1O2) was formed in the catalytic process, its contribution to BPA elimination was weeny. Interestingly, through the experiment with dimethyl sulfoxide as the probe, it was considered that the high-valent nickel-oxo species (Ni&+=O), generated after the interaction of NiCx-CN and PMS, was the dominating reactive oxygen species (ROS). Theoretical calculations (DFT) implied that NiCx-CN might lose electrons to generate high-valent Ni, which was consistent with the detection of Ni3+ on the surface of the used NiCx-CN. Besides, the prepared NiCx-CN showed advantages in resisting the interference of inorganic anions. Meanwhile, three BPA degradation routes had been proposed based on the transformation intermediates. This study will establish a new protocol for PMS activation using heterogeneous Ni-based catalysts to efficiently degrade organic pollutants via a nonradical mechanism.


Asunto(s)
Grafito , Oxígeno Singlete , Níquel , Peróxidos
16.
Water Res ; 240: 120128, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247436

RESUMEN

Advanced oxidation technologies based on periodate (PI, IO4-) have garnered significant attention in water decontamination. In this work, we found that electrochemical activation using graphite electrodes (E-GP) can significantly accelerate the degradation of micropollutants by PI. The E-GP/PI system achieved almost complete removal of bisphenol A (BPA) within 15 min, exhibited unprecedented pH tolerance ranging from pH 3.0 to 9.0, and showed more than 90% BPA depletion after 20 h of continuous operation. Additionally, the E-GP/PI system can realize the stoichiometric transformation of PI into iodate, dramatically decreasing the formation of iodinated disinfection by-products. Mechanistic studies confirmed that singlet oxygen (1O2) is the primary reactive oxygen species in the E-GP/PI system. A comprehensive evaluation of the oxidation kinetics of 1O2 with 15 phenolic compounds revealed a dual descriptor model based on quantitative structure-activity relationship (QSAR) analysis. The model corroborates that pollutants exhibiting strong electron-donating capabilities and high pKa values are more susceptible to attack by 1O2 through a proton transfer mechanism. The unique selectivity induced by 1O2 in the E-GP/PI system allows it to exhibit strong resistance to aqueous matrices. Thus, this study demonstrates a green system for the sustainable and effective elimination of pollutants, while providing mechanistic insights into the selective oxidation behaviour of 1O2.


Asunto(s)
Contaminantes Ambientales , Grafito , Contaminantes Químicos del Agua , Agua , Grafito/química , Descontaminación , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/química
17.
J Hazard Mater ; 452: 131355, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37027922

RESUMEN

Zerovalent iron (ZVI)-based Fenton-like processes have been widely applied in degrading organic contaminants. However, the surface oxyhydroxide passivation layer produced during the preparation and oxidation of ZVI hinders its dissolution and Fe(III)/Fe(II) cycling, and restricts the generation of reactive oxygen species (ROS). In this study, copper sulfide (CuS) was found to effectively enhance the degradation of diverse organic pollutants in the ZVI/H2O2 system. Moreover, the degradation performance for the actual industrial wastewater (i.e., dinitrodiazophenol wastewater) in the ZVI/H2O2 system was impressively improved by 41% with CuS addition, and the COD removal efficiency could reach 97% after 2 h of treatment. Mechanism investigation revealed that the introduction of CuS accelerated the sustainable supply of Fe(II) in the ZVI/H2O2 system. Specifically, Cu(I) and reductive sulfur species (i.e., S2-, S22-, Sn2- and H2S (aq)) from CuS directly induced efficient Fe(III)/Fe(II) cycling. The iron-copper synergistic effect between Cu(II) from CuS and ZVI expedited Fe(II) generation from ZVI dissolution and Fe(III) reduction by formed Cu(I). This study not only elucidates the promotion effects of CuS on ZVI dissolution and Fe(III)/Fe(II) cycling in ZVI-based Fenton-like processes, but also provides a sustainable and high-efficiency iron-based oxidation system for removal of organic contaminants.

18.
J Hazard Mater ; 454: 131479, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104949

RESUMEN

At present, the potential mechanism of manganese oxide (MnO2) activation of PI and the key active sites of PI activation are still unclear and controversial. To this end, three different crystal forms of MnO2 were prepared in this study and used to activate PI to degrade pollutants. The results showed that different crystal types of MnO2 showed different catalytic abilities, and the order was γ-MnO2 > α-MnO2 > ß-MnO2. Through quenching experiments, EPR tests, Raman experiments and in situ electrochemical experiments, it has been confirmed that electron transfer-mediated non-free radical process is the main mechanism of pollutant degradation, in which the active substance is the highly active metastable intermediate complex (MnO2/PI*). Hydroxyl radical (HO•), superoxide radical (O2•-), singlet oxygen (1O2) and iodine radical (IO3•) did not participate in pollutant degradation. The quantitative structure-activity relationship analysis confirmed that the catalytic performance of MnO2 was highly positively correlated with the surface Mn(IV) content, which indicated that the surface Mn(IV) site was the main active site. Overall, this study will be of great help to the design and application of manganese dioxide activation for periodate degradation of pollutants.

19.
Food Funct ; 14(21): 9567-9579, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37800998

RESUMEN

This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM-GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM-GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM-GA-astaxanthin on oxidative stress. Moreover, MFGM-GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Nanopartículas , Humanos , Animales , Ratones , Sulfato de Dextran/efectos adversos , Células CACO-2 , Mucosa Intestinal/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Estrés Oxidativo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon/metabolismo
20.
ACS Appl Mater Interfaces ; 15(12): 16153-16161, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36802501

RESUMEN

Layered transition metal dichalcogenides (TMDs) are two-dimensional materials exhibiting a variety of unique features with great potential for electronic and optoelectronic applications. The performance of devices fabricated with mono or few-layer TMD materials, nevertheless, is significantly affected by surface defects in the TMD materials. Recent efforts have been focused on delicate control of growth conditions to reduce the defect density, whereas the preparation of a defect-free surface remains challenging. Here, we show a counterintuitive approach to decrease surface defects on layered TMDs: a two-step process including Ar ion bombardment and subsequent annealing. With this approach, the defects, mainly Te vacancies, on the as-cleaved PtTe2 and PdTe2 surfaces were decreased by more than 99%, giving a defect density <1.0 × 1010 cm-2, which cannot be achieved solely with annealing. We also attempt to propose a mechanism behind the processes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda