Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 54(13): 7891-7900, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32490674

RESUMEN

Very high spatially resolved satellite-derived ground-level concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) have multiple potential applications, especially in air quality modeling and epidemiological and climatological research. Satellite-derived aerosol optical depth (AOD) and columnar water vapor (CWV), meteorological parameters, and land use data were used as variables within the framework of a linear mixed effect model (LME) and a random forest (RF) model to predict daily ground-level concentrations of PM2.5 at 1 km × 1 km grid resolution across the Indo-Gangetic Plain (IGP) in South Asia. The RF model exhibited superior performance and higher accuracy compared with the LME model, with better cross-validated explained variance (R2 = 0.87) and lower relative prediction error (RPE = 24.5%). The RF model revealed improved performance metrics for increasing averaging periods, from daily to weekly, monthly, seasonal, and annual means, which supported its use in estimating PM2.5 exposure metrics across the IGP at varying temporal scales (i.e., both short and long terms). The RF-based PM2.5 estimates showed high PM2.5 levels over the middle and lower IGP, with the annual mean exceeding 110 µg/m3. As for seasons, winter was the most polluted season, while monsoon was the cleanest. Spatially, the middle and lower IGP showed poorer air quality compared to the upper IGP. In winter, the middle and lower IGP experienced very poor air quality, with mean PM2.5 concentrations of >170 µg/m3.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Asia , Monitoreo del Ambiente , Meteorología , Material Particulado/análisis
2.
Remote Sens Environ ; 221: 665-674, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31359889

RESUMEN

Satellite aerosol optical depth (AOD) has been widely employed to evaluate ground fine particle (PM2.5) levels, whereas snow/cloud covers often lead to a large proportion of non-random missing AOD values. As a result, the fully covered and unbiased PM2.5 estimates will be hard to generate. Among the current approaches to deal with the data gap issue, few have considered the cloud-AOD relationship and none of them have considered the snow-AOD relationship. This study examined the impacts of snow and cloud covers on AOD and PM2.5 and made full- coverage PM2.5 predictions by considering these impacts. To estimate missing AOD values, daily gap-filling models with snow/cloud fractions and meteorological covariates were developed using the random forest algorithm. By using these models in New York State, a daily AOD data set with a 1-km resolution was generated with a complete coverage. The "out-of-bag" R2 of the gap-filling models averaged 0.93 with an interquartile range from 0.90 to 0.95. Subsequently, a random forest-based PM2.5 prediction model with the gap-filled AOD and covariates was built to predict fully covered PM2.5 estimates. A ten-fold cross-validation for the prediction model showed a good performance with an R2 of 0.82. In the gap-filling models, the snow fraction was of higher significance to the snow season compared with the rest of the year. The prediction models fitted with/without the snow fraction also suggested the discernible changes in PM2.5 patterns, further confirming the significance of this parameter. Compared with the methods without considering snow and cloud covers, our PM2.5 prediction surfaces showed more spatial details and reflected small-scale terrain-driven PM2.5 patterns. The proposed methods can be generalized to the areas with extensive snow/cloud covers and large proportions of missing satellite AOD data for predicting PM2.5 levels with high resolutions and complete coverage.

3.
Proc Natl Acad Sci U S A ; 111(45): 16041-6, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349419

RESUMEN

We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km(2)) and across 80% of the subtropical grasslands (3.3 million km(2)). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km(2) compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.


Asunto(s)
Cambio Climático , Pradera , Modelos Biológicos , Lluvia , Bosque Lluvioso , Brasil
4.
Glob Chang Biol ; 22(10): 3427-43, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27124119

RESUMEN

Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub-Basin estimates have not been previously available.


Asunto(s)
Cambio Climático , Ecosistema , Ciclo del Carbono , Dióxido de Carbono , Estaciones del Año
6.
Atmos Meas Tech ; 11(5): 2983-2994, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30450131

RESUMEN

Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (>50%) of the TEMPO field of regard can be snow covered in January, and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered. We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93%, precision of 87%, recall of 83%). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90% for Aqua and Terra), but underestimated the presence of snow (recall of 74% for Aqua, 75% for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51%, recall of 43% for Aqua; precision of 69%, recall of 45% for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83%) but missed a significant number of snow-covered pixels (recall of 45%). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91%, precision of 79%, recall of 82%). We use the F score, which balances precision and recall, to determine overall product performance (F = 85%, 82(82)%, 81%, 58%, 46(54)% for IMS, MAIAC Aqua(Terra), CMC, NISE, MODIS Aqua(Terra) respectively) for providing snow cover information for TEMPO retrievals from solar backscatter observations. We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes in clear-sky conditions across North America in January can increase both the number of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by a factor of 2.7.

7.
Atmos Meas Tech ; 11(7): 4073-4092, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32676129

RESUMEN

Long-term measurements of global aerosol loading and optical properties are essential for assessing climate-related questions. Using observations of spectral reflectance and radiance, the dark-target (DT) aerosol retrieval algorithm is applied to Moderate-resolution Imaging Spectroradiometer sensors on both Terra (MODIS-T) and Aqua (MODIS-A) satellites, deriving products (known as MOD04 and MYD04, respectively) of global aerosol optical depth (AOD at 0.55 µm) over both land and ocean, and Angstrom Exponent (AE derived from 0.55 and 0.86 µm) over ocean. Here, we analyse the overlapping time series (since mid-2002) of the Collection 6 (C6) aerosol products. Global monthly mean AOD from MOD04 (Terra with morning overpass) is consistently higher than MYD04 (Aqua with afternoon overpass) by ~13% (~0.02 over land and ~0.015 over ocean), and this offset (MOD04 - MYD04), has seasonal as well as long-term variability. Focusing on 2008, and deriving yearly gridded mean AOD and AE, we find that over ocean, the MOD04 (morning) AOD is higher and the AE is lower. Over land, there is more variability, but only biomass-burning regions tend to have AOD lower for MOD04. Using simulated aerosol fields from the Goddard Earth Observing System (GEOS-5) Earth system model, and sampling separately (in time and space) along each MODIS-observed swath during 2008, the magnitudes of morning versus afternoon offsets of AOD and AE are smaller than those in the C6 products. Since the differences are not easily attributed to either aerosol diurnal cycles or sampling issues, we test additional corrections to the input reflectance data. The first, known as C6+, corrects for long-term changes to each sensors' polarization sensitivity, response-versus-scan angle, and to cross-calibration from MODIS-T to MODIS-A. A second convolves the de-trending and cross-calibration into scaling factors. Each method was applied upstream of the aerosol retrieval, using 2008 data. While both methods reduced the overall AOD offset over land from 0.02 to 0.01, neither significantly reduced the AOD offset over ocean. The overall negative AE offset was reduced. A Collection (C6.1) of all MODIS-atmosphere products was released, but we expect that the C6.1 aerosol products will maintain similar overall AOD and AE offsets. We conclude that: a) users should not interpret global differences between Terra and Aqua aerosol products as representing a true diurnal signal in the aerosol. b) Because the MODIS-A product appears to have overall smaller bias compared to ground-truth, it may be more suitable for some applications, however c) since the AOD offset is only ~0.02 and within noise level for single retrievals, both MODIS products may be adequate for most applications.

8.
J Geophys Res Atmos ; 122(5): 3005-3022, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29796366

RESUMEN

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere.

9.
J Air Waste Manag Assoc ; 67(1): 53-63, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27653469

RESUMEN

Information regarding the magnitude and distribution of PM2.5 emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time-consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially resolved emission inventories for PM2.5. This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeastern United States during the period 2002-2013 using high-resolution 1 km × 1 km aerosol optical depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R2 = 0.66-0.71, CV = 17.7-20%). Predicted emissions are found to correlate with land use parameters, suggesting that our method can capture emissions from land-use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively. IMPLICATIONS: We present a novel method, particle emission inventories using remote sensing (PEIRS), using remote sensing data to construct spatially resolved PM2.5 emission inventories. Both primary emissions and secondary formations are captured and predicted at a high spatial resolution of 1 km × 1 km. Using PEIRS, large and comprehensive data sets can be generated cost-effectively and can inform development of air quality regulations.


Asunto(s)
Contaminantes Atmosféricos/química , Monitoreo del Ambiente/instrumentación , Material Particulado/análisis , Tecnología de Sensores Remotos , Emisiones de Vehículos/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Humanos , Nave Espacial
10.
PLoS One ; 12(7): e0180932, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28708897

RESUMEN

Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.


Asunto(s)
Bosques , Clima Tropical , Brasil , Ecosistema , Modelos Teóricos , Estaciones del Año , Árboles/crecimiento & desarrollo
11.
J Geophys Res Atmos ; 118(17): 9753-9765, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25821661

RESUMEN

[1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda